Hai mặt phẳng đã cho song song với nhau.
Lấy \(M\left( {{x_0},{y_0},{z_0}} \right)\) thuộc mặt phẳng \(Ax + By + Cz + D = 0\).
Ta có \(A{x_0} + B{y_0} + C{z_0} + D = 0 \Rightarrow A{x_0} + B{y_0} + C{z_0} = - D\)
Khoảng cách giữa hai mặt phẳng bằng khoảng cách từ điểm M đến mặt phẳng thứ hai, ta có:
\(d = {{\left| {A{x_0} + B{y_0} + C{z_0} + D'} \right|} \over {\sqrt {{A^2} + {B^2} + {C^2}} }} = {{\left| {D' - D} \right|} \over {\sqrt {{A^2} + {B^2} + {C^2}} }}\)