a) Gọi \(M\) là trung điểm của \(AB\) ta có: \(OM \bot AB\) và \(O'M \bot AB \Rightarrow AB \bot \left( {OO'M} \right)\)
Gọi \(\Delta ,\,\Delta '\) lần lượt là trục của đường tròn \((O; r)\) và \((O’; r’)\) thì \(AB \bot \Delta \,\,,\,\,AB \bot \Delta '\). Do đó \(\Delta ,\,\Delta '\) cùng nằm trong mp \((OO’M)\).
Gọi \(I\) là giao điểm của \(\Delta \) và \(\Delta '\) thì \(I\) là tâm của mặt cầu \((S)\) đi qua hai đường tròn \((O; r)\) và \((O’; r’)\) và \(S\) có bán kính \(R = IA\).
b) Ta có: \(MA = MB = 3\,\,,\,\,OA = r = 5,\,\,OA' = r' = \sqrt {10} \)
\(\eqalign{
& OM = \sqrt {O{A^2} - A{M^2}} = \sqrt {25 - 9} = 4 \cr
& O'M = \sqrt {O'{A^2} - A{M^2}} = \sqrt {10 - 9} = 1 \cr} \)
Áp dụng định lí Cosin trong \(\Delta {\rm{OMO'}}\) ta có:
\(\eqalign{
& OO{'^2} = O{M^2} + O'{M^2} - 2OM.O'M.\cos \widehat {OMO'} \cr
& \Rightarrow 21 = 16 + 1 - 2.4.1.cos\widehat {OMO'} \Rightarrow \cos \widehat {OMO'} = - {1 \over 2} \cr
& \Rightarrow \widehat {OMO'} = {120^0},\,\,\widehat {OIO'} = {60^0} \cr} \)
Áp dụng định lí Côsin trong tam giác \(OMO’\) ta có:
\(\eqalign{
& M{O^2} = MO{'^2} + OO{'^2} - 2MO'.OO'.cos\widehat {MO'O} \cr
& \Rightarrow \cos \widehat {MO'O} = {{\sqrt {21} } \over 7} \Rightarrow \sin \widehat {OO'I} = {{\sqrt {21} } \over 7} \cr} \)
(Vì \(\widehat {MO'O} + \widehat {OO'I} = {90^0}\))
Áp dụng định lí Cosin trong tam giác \(OIO’\) ta có: \({{OI} \over {\sin \widehat {OO'I}}} = {{OO'} \over {\sin \widehat {OIO'}}} \Leftrightarrow {{OI} \over {{{\sqrt {21} } \over 7}}} = {{\sqrt {21} } \over {{{\sqrt 3 } \over 2}}} \Leftrightarrow OI = 2\sqrt 3 \)
Vậy \(R = \sqrt {O{A^2} + O{I^2}} = \sqrt {25 + 12} = \sqrt {37} \)