Gọi \(S\) là giao điểm của hai cạnh bên \(AD\) và \(BC\) của hình thang. Đường cao \(SO\) của tam giác cân \(SCD\) là trục đối xứng của hình thang, do đó \(SO\) cắt \(AB\) tại trung điểm \(O’\) của \(AB\).
Khi quay quanh \(SO\), tam giác \(SCD\) sinh ra khối nón \(\left( {{N_1}} \right)\) có thể tích \({V_1}\), tam giác \(SAB\) sinh ra khối nón \(\left( {{N_2}} \right)\) có thể tích \({V_2}\), còn hình thang \(ABCD\) sinh ra một khối tròn xoay \(\left( H \right)\) có thể tích \(V = {V_1} - {V_2}\).
Vì \(AB = {1 \over 2}CD\) nên \(AB\) là đường trung bình của tam giác \(SCD\) nên \(SB = BC = 3a\).
Ta có \(SO' = \sqrt {S{B^2} - O'{B^2}} = \sqrt {9{a^2} - {a^2}} = 2\sqrt 2 a\)
\(\eqalign{
& SO = 2SO' = 4\sqrt 2 a \cr
& V = {V_1} - {V_2} = {1 \over 3}\pi O{C^2}.SO - {1 \over 3}\pi O'{B^2}.SO' = {1 \over 3}\pi 4{a^2}.SO - {1 \over 3}\pi {a^2}SO' \cr
& = {1 \over 3}\pi {a^2}\left( {4SO - SO'} \right) = {1 \over 3}\pi {a^2}\left( {16\sqrt 2 a - 2\sqrt 2 a} \right) = {{14\sqrt 2 } \over 3}\pi {a^3} \cr} \)
Diện tích xung quanh của khối tròn xoay \((H)\) là:
\(\eqalign{
& {S_{xq}} = {S_1} - {S_2} = \pi OC.SC - \pi O'B.SB = 9\pi {a^2} \cr
& {S_{tp}} = {S_{xq}} + {S_d} = 9\pi {a^2} + \pi {a^2} + 4\pi {a^2} = 14\pi {a^2} \cr} \)