Bài 17. Trong mỗi trường hợp sau, hãy gọi tên hình tròn xoay:
a) Sinh bởi ba cạnh của một tam giác cân khi quay quanh trục đối xứng của tam giác đó.
b) Sinh bởi một tam giác vuông (kể cả điểm trong) khi quay quanh đường thẳng chứa một cạnh góc vuông.
Bài 19. Một mặt cầu gọi là ngoại tiếp một hình nón nếu mặt cầu đó đi qua đỉnh của hình nón và đi qua đường tròn đáy của hình nón. Hình nón như vậy gọi là nội tiếp mặt cầu đó.
a) Chứng minh rằng mọi hình nón đều có mặt cầu ngoại tiếp duy nhất.
b) Một hình nón có chiều cao \(h\) và bán kính đáy bằng \(r\). Tìm bán kính mặt cầu ngoại tiếp hình nón đó.
c) Cho hình nón nội tiếp mặt cầu bán kính \(R\). Nếu hình nón đó có chiều cao bằng \(h\) thì bán kính đáy của nó bằng bao nhiêu? Tính diện tích xung quanh của hình nón đó.
Bài 20. Một mặt cầu gọi là nội tiếp hình nón nếu nó tiếp xúc với mặt đáy của hình nón và tiếp xúc với mọi đường sinh của hình nón. Khi đó hình nón được gọi là ngoại tiếp mặt cầu.
a) Chứng minh rằng mọi hình nón đều có một mặt cầu nội tiếp duy nhất.
b) Một hình nón có chiều cao \(h\) và bán kính đáy bằng \(r\). Hãy tính bán kính mặt cầu nội tiếp hình nón đó.