Lấy hai điểm bất kì \(M = ({x_1};{\rm{ }}{y_1})\) và \(N({x_2};{y_2})\) khi đó
\(MN = \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} \)
Ảnh của M, N qua F1 lần lượt là \(M' = ({y_1}; - {x_1})\) và \(N' = ({y_2}; - {x_2})\)
Như vậy ta có: \(M'N' = \sqrt {{{\left( {{y_1} - {y_2}} \right)}^2} + {{\left( { - {x_1} + {x_2}} \right)}^2}} \)
Suy ra \(M’N’ = MN\), vậy F1 là phép dời hình
Ảnh của M, N qua F2 lần lượt là \(M' = (2{x_1};{\rm{ }}{y_1})\) và \(N' = (2{x_2};{y_2})\)
Như vậy ta có: \(M'N' = \sqrt {4{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} \)
Từ đó suy ra : nếu \({x_1} \ne {x_2}\) thì \(M’N’≠ MN\), vậy F2 không phải là phép dời hình