Bài 7. Qua phép đối xứng trục \({D_a}\) (a là trục đối xứng), đường thẳng \(d\) biến thành đường thẳng \(d'\). Hãy trả lời các câu hỏi sau:
a. Khi nào thì \(d\) song song với \(d'\)?
b. Khi nào thì \(d\) trùng với \(d'\) ?
c. Khi nào thì \(d\) cắt \(d'\)? Giao điểm của \(d\) và \(d'\)có tính chất gì ?
d. Khi nào \(d\) vuông góc với \(d'\)?
Bài 8. Trong mặt phẳng tọa độ Oxy, cho các đường tròn (C1) và (C2) lần lượt có phương trình:
\(\eqalign{
& \left( {{C_1}} \right):{x^2} + {y^2} - 4x + 5y + 1 = 0 \cr
& \left( {{C_2}} \right):{x^2} + {y^2} + 10y - 5 = 0 \cr} \)
Viết phương trình ảnh của mỗi đường tròn trên qua phép đối xứng có trục Oy
Bài 9. Cho góc nhọn xOy và một điểm A nằm trong góc đó. Hãy xác định điểm B trên Ox và điểm C trên Oy sao cho tam giác ABC có chu vi nhỏ nhất
Bài 10. Cho hai điểm B,C cố định nằm trên đường tròn và điểm A thay đổi trên đường tròn đó. Hãy dùng phép đối xứng trục để chứng minh rằng trực tâm H của tam giác ABC nằm trên một đường tròn cố định
Hướng dẫn. Khi BC không phải là đường kính, gọi là giao điểm của đường thẳng AH với đường tròn . Chứng minh rằng đối xứng với qua đường thẳng BC
Bài 11.
a. Chỉ ra trục đối xứng (nếu có) của mỗi hình sau đây (mỗi hình là một từ bao gồm một số chữ cái):
b. Chứng minh rằng đồ thị của hàm số chẵn luôn có trục đối xứng