a) Phương trình đường thẳng \(y=ax+b\) đi qua \(A(4; 3)\) và \(B(2;- 1)\) nên tọa độ \(A,B\) thỏa mãn phương trình \(y=ax+b\). Do đó ta có:
\(\left\{ \begin{array}{l}
4a + b = 3\\
2a + b = - 1
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
a = 2\\
b = - 5
\end{array} \right.\)
Vậy phương trình đường thẳng \(AB\) cần tìm là: \(y = 2x - 5\).
b) Trục \(Ox\) có phương trình là \(y=0\). Đường thẳng \(y=ax+b\) song song với \(Ox\) nên \(a=0\), do đó đường thẳng cần tìm có dạng là \(y=b\)
Đường thẳng \(y=b\) đi qua \(A(1;-1)\) nên tọa độ \(A\) thỏa mãn phương trình đường thẳng, ta có: \(y=-1\)
Vậy phương trình đường thẳng cần tìm là: \(y=-1\)