Bài 30 trang 108 SBT toán 7 tập 1

Đề bài

Trên hình dưới, hai đường thẳng \(a, b\) song song với nhau, đường thẳng \(c\) cắt \(a\) tại \(A\), cắt \(b\) tại \(B\).

a) Lấy một cặp góc so le trong (chẳng hạn cặp \({{\rm{A}}_4},{B_1}\) rồi đo xem hai góc đó có bằng nhau hay không?

b) Hãy lí luận vì sao \(\widehat {{A_4}} = \widehat {{B_1}}\) theo gợi ý sau:

Nếu \(\widehat {{{\rm{A}}_4}} \ne \widehat {{B_1}}\) thì qua \(A\) ta vẽ tia \(AP\) sao cho \(\widehat {PAB} = \widehat {{B_1}}\).

- Thế thì \(AP // b\), vì sao?

- Qua \(A\), vừa có \(a // b\), vừa có \(AP // b\), thì sao?

- Kết luận: Đường thẳng \(AP\) và đường thẳng \(a\) chỉ là một. Nói cách khác, \(\widehat {PAB} = \widehat {{A_4}}\), từ đó \(\widehat {{A_4}} = \widehat {{B_1}}\).

Lời giải

a) \(\widehat {{A_4}} = \widehat {{B_1}}\)

b) Nếu \(\widehat {{A_4}} \ne \widehat {{B_1}}\), thì qua \(A\) ta vẽ tia \(AP\) sao cho \(\widehat {PAB} = \widehat {{B_1}}\)

Vì \(AP\) và \(b\) có cặp góc so le trong bằng nhau nên \(AP // b\).

Khi đó, qua \(A\) ta vừa có \(a // b\), vừa có \(AP // b\), trái với tiên đề Ơclít về đường thẳng song song.

Vậy đường thẳng \(AP\) và đường thẳng \(a\) chỉ là một, hay \(\widehat {PAB} = \widehat {{A_4}}\) nghĩa là \(\widehat {{A_4}} = \widehat {{B_1}}\).