Bài 4.37 trang 171 SBT đại số và giải tích 11

Đề bài

Xét tính liên tục của các hàm số sau trên tập xác định của chúng :

a)

\(f\left( x \right) = \left\{ \matrix{
{{{x^2} - 2} \over {x - \sqrt 2 }},\,{\rm{ nếu }}\,\,x \ne \sqrt 2 \hfill \cr 
2\sqrt 2 {\rm{ , \,\,nếu }}\,\,x = \sqrt 2 \hfill \cr} \right.\) ;

b)

\(g\left( x \right) = \left\{ \matrix{
{{1 - x} \over {{{\left( {x - 2} \right)}^2}}},\,\,{\rm{ nếu }}\,\,x \ne 2 \hfill \cr 
3{\rm{ ,\,\, nếu }}\,\,x = 2 \hfill \cr} \right.\)

Lời giải

a) \(f\left( x \right) = \left\{ \matrix{
{{{x^2} - 2} \over {x - \sqrt 2 }},\,{\rm{ nếu }}\,\,x \ne \sqrt 2 \hfill \cr 
2\sqrt 2 {\rm{ , \,\,nếu }}\,\,x = \sqrt 2 \hfill \cr} \right.\) ;   

Tập xác định của hàm số là D = R

- Nếu \(x \ne \sqrt 2 \) thì \(f\left( x \right) = {{{x^2} - 2} \over {x - \sqrt 2 }}\)

Đây là hàm phân thức hữu tỉ nên liên tục trên các khoảng \(\left( { - \infty {\rm{ }};{\rm{ }}\sqrt 2 } \right)\) và \(\left( {\sqrt 2 {\rm{ }};{\rm{ }} + \infty } \right)\)

- Tại \(x = \sqrt 2 \) :

\(\eqalign{
& \mathop {\lim }\limits_{x \to \sqrt 2 } f\left( x \right) = \mathop {\lim }\limits_{x \to \sqrt 2 } {{{x^2} - 2} \over {x - \sqrt 2 }} \cr 
& = \mathop {\lim }\limits_{x \to \sqrt 2 } {{\left( {x - \sqrt 2 } \right)\left( {x + \sqrt 2 } \right)} \over {x - \sqrt 2 }} \cr 
& = \mathop {\lim }\limits_{x \to \sqrt 2 } \left( {x + \sqrt 2 } \right) = 2\sqrt 2 = f\left( {\sqrt 2 } \right) \cr}\)

Vậy hàm số liên tục tại \(x = \sqrt 2 \) 

Kết luận : \(y = f\left( x \right)\) liên tục trên R

b)  \(g\left( x \right) = \left\{ \matrix{
{{1 - x} \over {{{\left( {x - 2} \right)}^2}}},\,\,{\rm{ nếu }}\,\,x \ne 2 \hfill \cr 
3{\rm{ ,\,\, nếu }}\,\,x = 2 \hfill \cr} \right.\)    có tập xác định là D = R

- Nếu \(x \ne 2\) thì \(g\left( x \right) = {{1 - x} \over {{{\left( {x - 2} \right)}^2}}}\) là hàm phân thức hữu tỉ, nên nó liên tục trên các khoảng \(\left( { - \infty ,2} \right)\) và \(\left( {2, + \infty } \right)\)

Tại x = 2 : \(\mathop {\lim }\limits_{x \to 2} g\left( x \right) = \mathop {\lim }\limits_{x \to 2} {{1 - x} \over {{{\left( {x - 2} \right)}^2}}} =  - \infty \)

Vậy hàm số \(y = g\left( x \right)\) không liên tục tại x = 2

Kết luận : \(y = g\left( x \right)\) liên tục trên các khoảng \(\left( { - \infty ,2} \right)\) và \(\left( {2, + \infty } \right)\) nhưng gián đoạn tại x = 2.