Nếu hàm số \(y = f\left( x \right)\) liên tục trên đoạn [a; b] và \(f\left( a \right).f\left( b \right) > 0\) thì phương trình \(f\left( x \right) = 0\) có thể có nghiệm hoặc vô nghiệm trong khoảng (a; b)
Ví dụ minh hoạ :
- \(f\left( x \right) = {x^2} - 1\) liên tục trên đoạn \(\left[ { - 2;2} \right],f\left( { - 2} \right)f\left( 2 \right) = 9 > 0\)
Phương trình \({x^2} - 1 = 0\) có nghiệm \(x = \pm 1\) trong khoảng (-2; 2)
- \(f\left( x \right) = {x^2} + 1\) liên tục trên đoạn [-1; 1] và \(f\left( { - 1} \right)f\left( 1 \right) = 4 > 0\). Còn phương trình \({x^2} + 1 = 0\) lại vô nghiệm trong khoảng (-1; 1).