a) Từ hệ thức \(\dfrac{1}{d}+\dfrac{1}{d'}=\dfrac{1}{f}.\)suy ra \(d' = φ(d) = \dfrac{fd}{d-f}\).
b)
\(\begin{array}{l}
+ )\,\,\mathop {\lim }\limits_{d \to {f^ + }} \varphi \left( d \right) = \mathop {\lim }\limits_{d \to {f^ + }} \dfrac{{fd}}{{d - f}}\\
\mathop {\lim }\limits_{d \to {f^ + }} \left( {fd} \right) = {f^2} > 0\\
\mathop {\lim }\limits_{d \to {f^ + }} \left( {d - f} \right) = 0;\,\,d \to {f^ + } \Rightarrow d > f \Rightarrow d - f > 0\\
\Rightarrow \mathop {\lim }\limits_{d \to {f^ + }} \varphi \left( d \right) = + \infty
\end{array}\)
Ý nghĩa: Nếu vật thật AB tiến dần về tiêu điểm F sao cho d luôn lớn hơn f thì ảnh của nó dần tới dương vô cực.
\(\begin{array}{l}
+ )\,\,\mathop {\lim }\limits_{d \to {f^ - }} \varphi \left( d \right) = \mathop {\lim }\limits_{d \to {f^ - }} \dfrac{{fd}}{{d - f}}\\
\mathop {\lim }\limits_{d \to {f^ - }} \left( {fd} \right) = {f^2} > 0\\
\mathop {\lim }\limits_{d \to {f^ - }} \left( {d - f} \right) = 0;\,\,d \to {f^ - } \Rightarrow d < f \Rightarrow d - f < 0\\
\Rightarrow \mathop {\lim }\limits_{d \to {f^ - }} \varphi \left( d \right) = - \infty
\end{array}\)
Ý nghĩa: Nếu vật thật AB tiến dần về tiêu điểm F sao cho d luôn nhỏ hơn f thì ảnh của nó dần tới âm vô sực.
+) \(\underset{d\rightarrow +\infty }{lim} φ(d) =\) \(\underset{d\rightarrow +\infty }{lim}\) \(\dfrac{fd}{d-f}\) = \(\underset{d\rightarrow +\infty }{lim}\) \(\dfrac{f}{1-\dfrac{f}{d}} = f\).
Ý nghĩa: Nếu vật thật AB ở xa vô cực so với thấu kính thì ảnh của nó ở ngay trên tiêu diện ảnh (mặt phẳng qua tiêu điểm ảnh F' và vuông góc với trục chính).