Bài 8. Một học sinh chứng minh mệnh đề “Với \(k\) là một số nguyên dương tùy ý, nếu \({8^k} + 1\) chia hết cho 7 thì \({8^{k + 1}} + 1\) cũng chia hết cho 7 ” như sau :
Ta có: \({8^{k + 1}} + 1 = 8\left( {{8^k} + 1} \right) - 7.\) Từ đây và giả thiết “\({8^k} + 1\) chia hết cho 7”, hiển nhiên suy ra \({8^{k + 1}} + 1\) chia hết cho 7.
Hỏi từ chứng minh trên, bạn học sinh đó có thể kết luận được “\({8^n} + 1\) chia hết cho 7 với mọi \(n \in \mathbb N^*\) ” hay không ? Vì sao ?