Bài 4. Cấp số nhân

Bài Tập và lời giải

Câu 29 trang 120 SGK Đại số và Giải tích 11 Nâng cao

Bài 29. Trong các dãy số dưới đây, dãy số nào là cấp số nhân ? Hãy xác định công bội của cấp số nhân đó.

a. Dãy số \(1, -2, 4, -8, 16, -32, 64\)

b. Dãy số (un) với \({u_n} = n{.6^{n + 1}}\)

c. Dãy số (vn) với \({v_n} = {\left( { - 1} \right)^n}{.3^{2n}}\)

d. Dãy số (xn) với \({x_n} = {\left( { - 4} \right)^{2n + 1}}\) .

Xem lời giải

Câu 30 trang 120 SGK Đại số và Giải tích 11 Nâng cao

Bài 30. Trong mỗi câu sau, hãy đánh dấu “x” vào phần kết luận mà em cho là đúng :

a. Mỗi cấp số nhân có số hạng đầu dương và công bội \(0 < q < 1\), là một dãy số

 Tăng

Giảm

 Không tăng cũng không giảm

b. Mỗi cấp số nhân có số hạng đầu dương và công bội \(q > 1\) là một dãy số

 Tăng

 Giảm

 Không tăng cũng không giảm

Xem lời giải

Câu 31 trang 121 SGK Đại số và Giải tích 11 Nâng cao
Cho cấp số nhân \(({u_n}) \) có công bội \(q < 0\). Biết \({u_2} = 4\) và \({u_4} = 9\), hãy tìm \(u_1\).

Xem lời giải

Câu 32 trang 121 SGK Đại số và Giải tích 11 Nâng cao
Bài 32. Một cấp số nhân có năm số hạng mà hai số hạng đầu tiên là những số dương, tích của số hạng đầu và số hạng thứ ba bằng 1, tích của số hạng thứ ba và số hạng cuối bằng \({1 \over {16}}\) . Hãy tìm cấp số nhân đó.Giải:Với mỗi \(n \in \left\{ {1,{\rm{ }}2,{\rm{ }}3,{\rm{ }}4,{\rm{ }}5} \right\}\), kí hiệu un là số hạng thứ n của cấp số nhân đã cho.Vì \({u_1} > 0,{u_2} > 0\) nên cấp số nhân (un) có công bội \(q > 0\), và do đó \({u_n} > 0{\rm{ }}\;\forall {\rm{ }}n \in \left\{ {1,{\rm{ }}2,{\rm{ }}3,{\rm{ }}4,{\rm{ }}5} \right\}\). Từ đó :\(\eqalign{
& 1 = {u_1}.{u_3} = u_2^2 \Rightarrow {u_2} = 1, \cr
& {1 \over {16}} = {u_3}.{u_5} = u_4^2 \Rightarrow {u_4} = {1 \over 4} \cr
& u_3^2 = {u_2}.{u_4} = {1 \over 4} \Rightarrow {u_3} = {1 \over 2} \cr} \)Do đó  \({u_1} = {1 \over {{u_3}}} = 2\,\text{ và }\,{u_5} = {1 \over {16}}:{u_3} = {1 \over 8}\)Vậy cấp số nhân cần tìm là :  \(2,1,{1 \over 2},{1 \over 4},{1 \over 8}\)

Xem lời giải

Câu 33 trang 121 SGK Đại số và Giải tích 11 Nâng cao

Bài 33. Cho cấp số nhân (un) với công bội \(q ≠ 0\) và \({u_1} \ne 0\). Cho các số nguyên dương m và k, với \(m ≥ k\). Chứng minh rằng \({u_m} = {u_k}.{q^{m - k}}\)

Áp dụng 

a. Tìm công bội q của cấp số nhân (un) có \({u_4} = 2\) và \({u_7} =  - 686\).

b. Hỏi có tồn tại hay không một cấp số nhân (un) mà \({u_2} = 5\) và \({u_{22}} =  - 2000\) ?

Xem lời giải

Câu 34 trang 121 SGK Đại số và Giải tích 11 Nâng cao
Bài 34. Hãy tìm số hạng tổng quát của cấp số nhân (un) , biết rằng \({u_3} =  - 5\) và \({u_6} = 135\)

Xem lời giải

Câu 35 trang 121 SGK Đại số và Giải tích 11 Nâng cao

Bài 35. Chu kì bán rã của nguyên tố phóng xạ poloni 210 là 138 ngày (nghĩa là sau 138 ngày khối lượng của nguyên tố chỉ còn một nửa). Tính (chính xác đến hàng phần trăm) khối lượng còn lại của 20 gam poloni 210 sau 7314 ngày (khoảng 20 năm).

Xem lời giải

Câu 36 trang 121 SGK Đại số và Giải tích 11 Nâng cao

Bài 36. Tính các tổng sau :

a. Tổng tất cả các số hạng của một cấp số nhân, biết rằng số hạng đầu bằng 18, số hạng thứ hai bằng 54 và số hạng cuối bằng 39 366;

b. Tổng tất cả các số hạng của một cấp số nhân, biết rằng số hạng đầu bằng \({1 \over {256}}\) , số hạng thứ hai bằng \({{ - 1} \over {512}}\) và số hạng cuối bằng  \({1 \over {1048576}}\)

Xem lời giải

Câu 37 trang 121 SGK Đại số và Giải tích 11 Nâng cao

Bài 37. Bốn góc lượng giác có số đo dương lâp thành một cấp số nhân có tổng là \(360^0\). Hãy tìm bốn góc đó, biết rằng số đo của góc lớn nhất gấp 8 lần số đo của góc nhỏ nhất.

Xem lời giải

Câu 38 trang 121 SGK Đại số và Giải tích 11 Nâng cao

Bài 38. Hãy chọn những khẳng định đúng trong các khẳng định dưới đây :

a. Nếu các số thực a, b, c mà \(abc ≠ 0\), theo thứ tự đó lập thành một cấp số cộng với công sai khác 0 thì các số \({1 \over a},{1 \over b},{1 \over c}\) theo thứ tự đó cũng lập thành một cấp số cộng.

b. Nếu các số thực a, b, c mà \(abc ≠ 0\), theo thứ tự đó lập thành một cấp số nhân thì các số \({1 \over a},{1 \over b},{1 \over c}\) theo thứ tự đó cũng lập thành một cấp số nhân.

c.  \(1 + \pi + {\pi ^2} + ... + {\pi ^{100}} = {{{\pi ^{100}} - 1} \over {\pi - 1}}\)

Xem lời giải

Câu 39 trang 122 SGK Đại số và Giải tích 11 Nâng cao

Bài 39. Các số \(x + 6y, 5x + 2y, 8x + y\) theo thứ tự đó lập thành một cấp số cộng ; đồng thời, các số \(x – 1, y + 2, x – 3y\) theo thứ tự đó lập thành một cấp số nhân. Hãy tìm x và y.

Xem lời giải

Câu 40 trang 122 SGK Đại số và Giải tích 11 Nâng cao

Bài 40. Cho cấp số cộng (un) với công sai khác 0. Biết rằng các số u1u2, u2u3 và u3u1 theo thứ tự đó lập thành một cấp số nhân với công bội q ≠ 0. Hãy tìm q.

Xem lời giải

Câu 41 trang 122 SGK Đại số và Giải tích 11 Nâng cao

Bài 41. Số hạng thứ hai, số hạng đầu và số hạng thứ ba của một cấp số cộng với công sai khác 0 theo thứ tự đó lập thành một cấp số nhân. Hãy tìm công bội của cấp số nhân đó.

Xem lời giải

Câu 42 trang 122 SGK Đại số và Giải tích 11 Nâng cao

Bài 42. Hãy tìm ba số hạng đầu tiên của một cấp số nhân, biết rằng tổng của chúng bằng \({{148} \over 9}\) và đồng thời các số hạng đó tương ứng là số hạng đầu, số hạng thứ tư và số hạng thứ tám của một cấp số cộng.

Xem lời giải

Câu 43 trang 122 SGK Đại số và Giải tích 11 Nâng cao

Bài 43. Cho dãy số (un) xác định bởi

U1 = 1 và un + 1 = 5un + 8 với mọi n ≥ 1.

a. Chứng minh rằng dãy số (vn), với vn = un + 2, là một cấp số nhân. Hãy tìm số hạng tổng quát của cấp số nhân đó.

b. Dựa vào kết quả phần a, hãy tìm số hạng tổng quát của dãy số (un).

Xem lời giải

Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”