Bài 1 trang 88 SGK Hình học 10

Xác đinh độ dài các trục, tọa độ tiêu điểm, tọa độ các đỉnh và vẽ các elip có phương trình sau:

a) \(\frac{x^{2}}{25} + \frac{y^{2}}{9}= 1.\)

b) \(4x^2+ 9y^2= 1.\)

c) \(4x^2+ 9y^2= 36.\)

Lời giải

a) Ta có: \(a^2= 25 \Rightarrow a = 5\) độ dài trục lớn \(2a = 10\) 

               \( b^2= 9 \Rightarrow  b = 3\) độ dài trục nhỏ \(2a = 6\) 

               \(c^2= a^2– b^2= 25 - 9 = 16  \Rightarrow c = 4\)

Vậy hai tiêu điểm là : \(F_1(-4 ; 0)\) và \(F_2(4 ; 0)\)

Tọa độ các đỉnh    \(A_1(-5; 0), A_2(5; 0),  B_1(0; -3),  B_2(0; 3)\).

b) \(4x^2+ 9y^2= 1\Leftrightarrow \frac{x^{2}}{\frac{1}{4}} + \frac{y^{2}}{\frac{1}{9}} = 1\)

  \(a^2  =\frac{1}{4}\Rightarrow a = \frac{1}{2}\)  \(\Rightarrow\) độ dài trục lớn \(2a = 1\)

  \(b^2= \frac{1}{9}\Rightarrow b = \frac{1}{3}\) \(\Rightarrow\)  độ dài trục nhỏ \(2b = \frac{2}{3}\)

   \(c^2= a^2– b^2= \frac{1}{}4- \frac{1}{9} =  \frac{5}{36}\) \(\Rightarrow c = \frac{\sqrt{5}}{6}\)

 \(F_1(-\frac{\sqrt{5}}{6} ; 0)\) và \(F_2(\frac{\sqrt{5}}{6} ; 0)\)

  \(A_1(-\frac{1}{2}; 0), A_2(\frac{1}{2}; 0)\), \(B_1(0; -\frac{1}{3} ), B_2(0; \frac{1}{3} )\).

c) Chia \(2\) vế của phương trình cho \(36\) ta được :

\(\frac{x^{2}}{9}+ \frac{y^{2}}{4}= 1\)

Từ đây suy ra: \(2a = 6,     2b = 4,    c = \sqrt5\)

Suy ra \(F_1(-\sqrt5 ; 0)\) và \(F_2(\sqrt5 ; 0)\)

 \(A_1(-3; 0), A_2(3; 0),  B_1(0; -2),  B_2(0; 2)\).