a) Nhân biểu thức với \(\sin {x \over 5}\),ta có:
\(\eqalign{
& A\sin {x \over 5}\cr& = \sin {x \over 5}\cos {x \over 5}\cos {{2x} \over 5}\cos {{4x} \over 5}\cos {{8x} \over 5} \cr
& = {1 \over 2}\sin {{2x} \over 5}\cos {{2x} \over 5}\cos {{4x} \over 5}\cos {{8x} \over 5} \cr
& = {1 \over 4}\sin {{4x} \over 5}\cos {{4x} \over 5}\cos {{8x} \over 5} \cr&= {1 \over 8}\sin {{8x} \over 5}\cos {{8x} \over 5} \cr
& = {1 \over {16}}\sin {{16x} \over 5} \cr} \)
Suy ra biểu thức rút gọn \(A =\sin{{16x} \over 5}:16\sin {x \over 5}.\)
b)
\(\eqalign{
& B = \sin {x \over 7} + 2\sin {{3x} \over 7} + \sin {{5x} \over 7}\cr& = 2\sin {{3x} \over 7} + (\sin {x \over 7} + \sin {{5x} \over 7}) \cr
& = 2\sin {{3x} \over 7} \cr&\;\;\;+ 2\sin {1 \over 2}({{5x} \over 7} + {x \over 7})cos{1 \over 2}({{5x} \over 7} - {x \over 7}) \cr
& = 2\sin {{3x} \over 7}(1 + \cos {{2x} \over 7}) \cr&= 4\sin {{3x} \over 7}{\cos ^2}{x \over 7}. \cr} \)