a) Với mọi \(\varphi \) ta có: \({\left( {\cos \varphi + i\sin \varphi } \right)^2} = {\cos ^2}\varphi - {\sin ^2}\varphi + \left( {2\sin \varphi \cos \varphi } \right)i\)
\( = \cos 2\varphi + i\sin 2\varphi \)
Vậy các căn bậc hai của \(\cos 2\varphi + i\sin 2\varphi \) là \( \pm \left( {\cos \varphi + i\sin \varphi } \right)\)
Theo cách giải trong bài học, để tìm căn bậc hai của\(\cos 2\varphi + i\sin 2\varphi \) ta giải hệ phương trình\(\left\{ \matrix{ {x^2} - {y^2} = \cos 2\varphi \hfill \cr 2xy = \sin 2\varphi \hfill \cr} \right.\)
Rõ ràng hệ có các nghiệm \(\left( {\cos \varphi ,\sin \varphi } \right),\left( { - \cos \varphi , - \sin \varphi } \right)\) do đó\( \pm \left( {\cos \varphi + i\sin \varphi } \right)\) là hai căn bậc hai của\(\cos 2\varphi + i\sin 2\varphi \). Ta biết rằng chỉ có hai căn như thế nên đó là tất cả các căn bậc hai cần tìm.
b) \({{\sqrt 2 } \over 2}\left( {1 - i} \right) = \cos {\pi \over 4} - i\sin {\pi \over 4} = \cos \left( { - {\pi \over 4}} \right) + i\sin \left( { - {\pi \over 4}} \right)\text{ thì theo câu a) }, {{\sqrt 2 } \over 2}\left( {1 - i} \right)\) có hai căn bậc hai là \( \pm \left( {\cos \left( {{{ - \pi } \over 8}} \right) + i\sin \left( {{{ - \pi } \over 8}} \right)} \right) = \pm \left( {\cos {\pi \over 8} - i\sin {\pi \over 8}} \right)\)
Mà \(\eqalign{ & \cos {\pi \over 8} = \sqrt {{{1 + \cos {\pi \over 4}} \over 2}} = \sqrt {{{1 + {{\sqrt 2 } \over 2}} \over 2}} = {1 \over 2}\sqrt {2 + \sqrt 2 } \cr & \sin {\pi \over 8} = \sqrt {{{1 - \cos {\pi \over 4}} \over 2}} = \sqrt {{{1 - {{\sqrt 2 } \over 2}} \over 2}} = {1 \over 2}\sqrt {2 - \sqrt 2 } \cr} \)
Vậy hai căn bậc hai cần tìm là \( \pm {1 \over 2}\left( {\sqrt {2 + \sqrt 2 } - i\sqrt {2 - \sqrt 2 } } \right)\)
Còn theo bài học, việc tìm các căn bậc hai của\({{\sqrt 2 } \over 2}\left( {1 - i} \right)\) đưa về việc giải hệ phương trình\(\left\{ \matrix{ {x^2} - {y^2} = {{\sqrt 2 } \over 2} \hfill \cr 2xy = - {{\sqrt 2 } \over 2} \hfill \cr} \right.\)
Hệ đó tương đương với \(\left\{ \matrix{ 8{x^4} - 4\sqrt 2 {x^2} - 1 = 0 \hfill \cr y = - {{\sqrt 2 } \over {4x}} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ {x^2} = {{\sqrt 2 + 2} \over 4} \hfill \cr y = - {{\sqrt 2 } \over {4x}} \hfill \cr} \right.\)
nên có các nghiệm là: \(\left( {{{\sqrt {2 + \sqrt 2 } } \over 2};{{ - \sqrt {2 - \sqrt 2 } } \over 2}} \right),\left( {{{ - \sqrt {2 + \sqrt 2 } } \over 2};{{\sqrt {2 - \sqrt 2 } } \over 2}} \right)\)
Vậy ta lại được hai căn bậc hai đã viết ở trên.