Đổi biến số \(x = \dfrac{\pi }{2} - t\), ta được: \(\int\limits_0^{\dfrac{\pi }{2}} {f(\sin x)dx} \)\( = - \int\limits_{\dfrac{\pi }{2}}^0 {f\left[ {\sin \left( {\dfrac{\pi }{2} - t} \right)} \right]dt} \) \( = \int\limits_0^{\dfrac{\pi }{2}} {f(\cos t)dt} \)
Hay \(\int\limits_0^{\dfrac{\pi }{2}} {f(\sin x)dx} = \int\limits_0^{\dfrac{\pi }{2}} {f(\cos x)dx} \)