Bài 7 trang 46 SGK Hình học 10

Trên mặt phẳng \(Oxy\) cho điểm \(A(-2; 1)\). Gọi \(B\) là điểm đối xứng với điểm \(A\) qua gốc tọa độ \(O\). Tìm tọa độ của điểm \(C\) có tung độ bằng \(2\) sao cho tam giác \(ABC\) vuông ở \(C\).

Lời giải

Điểm \(B\) đối xứng với \(A\) qua gốc tọa độ nên tọa độ của \(B\) là \((2; -1)\)

Tọa độ của \(C\) là \((x; 2)\). Ta có: \(\vec{CA} = (-2 - x; -1)\)

                                                  \(\vec{CB} = (2 - x; -3)\)

Tam giác \(ABC\) vuông tại \(C\) \(\Rightarrow\vec{CA} ⊥ \vec{CB}\Rightarrow \vec{CA}.\vec{CB} = 0\)

\(\Rightarrow(-2 - x)(2 - x) + (-1)(-3) = 0\)

\(\Rightarrow -4 +x^2+ 3 = 0\)

\(\Rightarrow x^2= 1 \Rightarrow x= 1\) hoặc \(x= -1\)

Ta tìm được hai điểm   \(C_1(1; 2);  C_2(-1; 2)\) thỏa mãn yêu cầu bài toán.