Trang chủ
Lớp 11 »
Môn Toán »
Giải Toán nâng cao 11 »
ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
Cho dãy số (un) xác định bởi
\({u_1} = 5\,\text{ và }\,{u_n} = {u_{n - 1}} - 2\) với mọi n ≥ 2
a. Hãy tìm số hạng tổng quát của dãy số (un)
b. Hãy tính tổng 100 số hạng đầu tiên của dãy số (un).
a. Ta có: \({u_{n + 1}} - {u_n} = - 2;\forall n \ge 1\)
Suy ra: (un) là một cấp số cộng có số hạng đầu u1 = 5 và công sai d = -2 do đó :
\({u_n} = {u_1} + \left( {n - 1} \right)d = 5 + \left( {n - 1} \right)\left( { - 2} \right) = - 2n + 7\)
b. \({S_{100}} = {{100} \over 2}\left( {2{u_1} + 99d} \right) = 50\left( {10 - 198} \right) = - 9400\)
Quote Of The Day
“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”