Tại sao nói cảnh cho chữ trong tác phẩm “Chữ người tử tù” là một cảnh tượng xưa nay chưa từng có

Không gian và thời gian rất đặc biệt (nơi ngục tù bẩn thỉu,tường đầy mạng nhện,đất bừa bãi phân chuột,phân gián; cảnh diễn ra vào lúc đêm khuya trong nhà ngục tối tăm)

Lời giải

Không gian và thời gian rất đặc biệt (nơi ngục tù bẩn thỉu,tường đầy mạng nhện,đất bừa bãi phân chuột,phân gián; cảnh diễn ra vào lúc đêm khuya trong nhà ngục tối tăm).

-        Người cho chữ trong cảnh “cổ đeo gông, chân vướng xiềng”; ngày mai lại phải vào kinh chịu án tử hình.

-        Vị thế các nhân vật bị đảo ngược (tử tù thành thần tượng,ân nhân của cai ngục; cai ngục thành người ngưỡng mộ,chịu ơn tử tù). Ngục tù sụp đổ,cái đẹp của nghệ thuật thư pháp và tài hoa,thiên lương thăng hoa. Ánh sáng chiến thắng bóng tối; cái đẹp lên ngôi chiến thắng cái thấp hèn.


Bài Tập và lời giải

Bài 2.13 trang 60 SBT hình học 12

Trong mặt phẳng \((\alpha )\) cho hình vuông ABCD có cạnh bằng a. Trên đường thẳng Ax vuông góc với \((\alpha )\) ta lấy một điểm S tùy ý, dựng mặt phẳng \((\beta )\) đi qua A và vuông góc với đường thẳng SC. Mặt phẳng \((\beta )\) cắt SB, SC, SD lần lượt tại B’, C’, D’.

a) Chứng minh rằng các điểm A, B, C, D, B’, C’, D’ luôn luôn thuộc một mặt cầu cố định.

b) Tính diện tích của mặt cầu đó và tính thể tích khối cầu được tạo thành.

Xem lời giải

Bài 2.14 trang 60 SBT hình học 12

Hình chóp tam giác S.ABC có SA = SB = SC = a và có chiều cao bằng h. Xác định tâm và bán kính của mặt cầu ngoại tiếp hình chóp. Tính diện tích của mặt cầu đó.

Xem lời giải

Bài 2.15 trang 60 SBT hình học 12

Cho hai đường thẳng chéo nhau \(\Delta \) và \(\Delta '\) có AA’ là đoạn vuông góc chung, trong đó \(A \in \Delta \) và \(A' \in \Delta '\). Gọi \((\alpha )\) là mặt phẳng chứa AA’ và vuông góc với  \(\Delta '\) và cho biết AA’ = a. Một đường thẳng thay đổi luôn luôn song song với mặt phẳng \((\alpha )\)  lần lượt cắt \(\Delta \) và \(\Delta '\)  tại M và M’. Hình chiếu vuông góc của M trên mặt phẳng \((\alpha )\)  là M1.

a) Xác định tâm O và bán kính r của mặt cầu đi qua 5 điểm A, A’ , M , M’, M1. Tính diện tích của mặt cầu tâm O nói trên theo a, x = A’M’ và góc \(\varphi  = (\Delta ,\Delta ')\)

b) Chứng minh rằng khi x thay đổi mặt cầu tâm O luôn luôn chứa một đường tròn cố định.

Xem lời giải

Bài 2.16 trang 60 SBT hình học 12

Cho tứ diện SABC có cạnh SA vuông góc với mặt phẳng (ABC) và có SA = a, AB = b , AC = c . Xác định tâm và bán kính hình cầu ngoại tiếp tứ diện trong các trường hợp sau:

a) \(\widehat {BAC} = {90^0}\)

b) \(\widehat {BAC} = {60^0}\) và \(b = c\)

c) \(\widehat {BAC} = {120^0}\) và \(b = c\)

Xem lời giải

Bài 2.17 trang 61 SBT hình học 12

Cho mặt cầu tâm O bán kính r. Gọi \((\alpha )\) là mặt phẳng cách tâm O một khoảng h

(0 < h < r) và cắt mặt cầu theo đường tròn (C). Đường thẳng d đi qua một điểm A cố định trên (C) và vuông góc với mặt phẳng \((\alpha )\)  cắt mặt cầu tại một điểm B. Gọi CD là đường kính di động của (C)

a) Chứng minh các tổng AD2 + BC2 và AC2 + BD2 có giá trị không đổi.

b) Với vị trí nào của CD thì diện tích tam giác BCD lớn nhất?

c) Tìm tập hợp các điểm H, hình chiếu của B trên CD khi CD chuyển động trên đường tròn (C).

Xem lời giải

Bài 2.18 trang 61 SBT hình học 12

Hình chóp S.ABC là hình chóp tam giác đều, có cạnh đáy bằng a và cạnh bên bằng \(a\sqrt 2 \) . Một mặt cầu đi qua đỉnh A và tiếp xúc với hai cạnh SB , SC tại trung điểm của mỗi cạnh.

a) Chứng minh rằng mặt cầu đó đi qua trung điểm của AB và AC.

b) Gọi giao điểm thứ hai của mặt cầu với đường thẳng SA là D. Tính độ dài của AD và SD.

Xem lời giải

Bài 2.19 trang 61 SBT hình học 12

Chứng minh rằng nếu có một mặt cầu tiếp xúc với 6 cạnh của một hình tứ diện thì hình tứ diện đó có tổng các cặp cạnh đối diện bằng nhau.

Xem lời giải

Bài 2.20 trang 61 SBT hình học 12

Hình tứ diện đều ABCD có cạnh bằng a và có đường cao AH. Gọi O là trung điểm của AH. Xác định tâm và bán kính của mặt cầu ngoại tiếp tứ diện OBCD.

Xem lời giải

Bài 2.21 trang 61 SBT hình học 12

Hình chóp S.ABCD có SA = a là chiều cao của hình chóp và đáy ABCD là hình thang vuông tại A và B có AB = BC = a và AD = 2a. Gọi E là trung điểm của cạnh AD. Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp S.CDE.

Xem lời giải

Bài 2.22 trang 61 SBT hình học 12

Cho hình cầu tâm O bán kính r. Lấy một điểm A trên mặt cầu và gọi \((\alpha )\) là mặt phẳng đi qua A sao cho góc giữa OA và \((\alpha )\) bằng 300.

a) Tính diện tích của thiết diện tạo bởi \((\alpha )\) và hình cầu.

b) Đường thẳng  đi qua A vuông góc với mặt phẳng \((\alpha )\) cắt mặt cầu tại B. Tính độ dài đoạn AB.

Xem lời giải

Bài 2.23 trang 61 SBT hình học 12

Cho hình cầu đường kính AA’ = 2r. Gọi H là một điểm trên đoạn AA’ sao cho \(AH = {{4r} \over 3}\). Mặt phẳng \((\alpha )\) qua H và vuông góc với AA’ cắt hình cầu theo đường tròn (C).

a) Tính diện tích của hình tròn (C).

b) Gọi BCD là tam giác đều nội tiếp trong (C), hãy tính thể tích hình chóp A.BCD và hình chóp A’.BCD.

Xem lời giải

Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”