Phân tích truyện ngắn Chữ người tử tù của nhà văn Nguyễn Tuân - Ngữ Văn 12

Lời giải


Bài Tập và lời giải

Bài 3.31 trang 130 SBT hình học 12

Đề bài

Viết phương trình tham số, phương trình chính tắc của đường thẳng \(\Delta \) trong các trường hợp sau:

a) \(\Delta \) đi qua điểm A(1; 2; 3) và có vecto chỉ phương \(\overrightarrow a  = (3;3;1)\);

b) \(\Delta \) đi qua điểm B(1; 0; -1) và vuông góc với mặt phẳng \((\alpha )\):  2x – y + z + 9 = 0

c) \(\Delta \) đi qua hai điểm C(1; -1; 1) và D(2; 1; 4)

Xem lời giải

Bài 3.33 trang 130 SBT hình học 12

Đề bài

Xét vị trí tương đối của các cặp đường thẳng d và d’ cho bởi các phương trình sau:

a) \(d:\dfrac{{x + 1}}{1} = \dfrac{{y - 1}}{2} = \dfrac{{z + 3}}{3}\)  và \(d':\dfrac{{x - 1}}{3} = \dfrac{{y - 5}}{2} = \dfrac{{z - 4}}{2}\)

b) \(d:\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 1 + t}\\{z = 2 - t}\end{array}} \right.\)  và  \(d':\left\{ {\begin{array}{*{20}{c}}{x = 9 + 2t'}\\{y = 8 + 2t'}\\{z = 10 - 2t'}\end{array}} \right.\)

c)  \(d:\left\{ {\begin{array}{*{20}{c}}{x =  - t}\\{y = 3t}\\{z =  - 1 - 2t}\end{array}} \right.\)  và \(d':\left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = 9}\\{z = 5t'}\end{array}} \right.\)

Xem lời giải

Bài 3.34 trang 130 SBT hình học 12

Đề bài

Tìm a để hai đường thẳng sau đây song song: \(d:\left\{ {\begin{array}{*{20}{c}}{x = 5 + t}\\{y = at}\\{z = 2 - t}\end{array}} \right.\) và \(d':\left\{ {\begin{array}{*{20}{c}}{x = 1 + 2t'}\\{y = a + 4t'}\\{z = 2 - 2t'}\end{array}} \right.\)

Xem lời giải

Bài 3.35 trang 130 SBT hình học 12

Đề bài

Xét vị trí tương đối của đường thẳng d với mặt phẳng \((\alpha )\) trong các trường hợp sau

a)  \(d:\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 1 + 2t}\\{z = 1 - t}\end{array}} \right.\)   và  \((\alpha )\) : x + 2y + z - 3 = 0

b)  d:  \(\left\{ {\begin{array}{*{20}{c}}{x = 2 - t}\\{y = t}\\{z = 2 + t}\end{array}} \right.\)  và  \((\alpha )\): x + z + 5 = 0

c) \(d:\left\{ {\begin{array}{*{20}{c}}{x = 3 - t}\\{y = 2 - t}\\{z = 1 + 2t}\end{array}} \right.\)   và \((\alpha )\) : x +y + z -6 = 0

Xem lời giải

Bài 3.36 trang 131 SBT hình học 12

Đề bài

Tính khoảng cách từ điểm A(1; 0; 1) đến đường thẳng \(\Delta :\dfrac{{x - 1}}{2} = \dfrac{y}{2} = \dfrac{z}{1}\)

Xem lời giải

Bài 3.37 trang 131 SBT hình học 12

Đề bài

Cho đường thẳng   \(\Delta :\dfrac{{x + 3}}{2} = \dfrac{{y + 1}}{3} = \dfrac{{z + 1}}{2}\) và mặt phẳng \((\alpha )\): 2x – 2y + z + 3 = 0

a) Chứng minh rằng  \(\Delta \) song song với \((\alpha )\).

b) Tính khoảng cách giữa \(\Delta \) và \((\alpha )\)

Xem lời giải

Bài 3.38 trang 131 SBT hình học 12

Đề bài

Tính khoảng cách giữa các cặp đường thẳng \(\Delta \) và \(\Delta '\) trong các trường hợp sau:

a) \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y =  - 1 - t}\\{z = 1}\end{array}} \right.\) và \(\Delta ':\left\{ {\begin{array}{*{20}{c}}{x = 2 - 3t'}\\{y = 2 + 3t'}\\{z = 3t'}\end{array}} \right.\)

b) \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 4 - t}\\{z =  - 1 + 2t}\end{array}} \right.\) và \(\Delta ':\left\{ {\begin{array}{*{20}{c}}{x = t'}\\{y = 2 - 3t'}\\{z =  - 3t'}\end{array}} \right.\)

Xem lời giải

Bài 3.39 trang 131 SBT hình học 12

Đề bài

Cho hai đường thẳng \(\Delta :\dfrac{{x - 1}}{2} = \dfrac{{y + 3}}{1} = \dfrac{{z - 4}}{{ - 2}}\) và \(\Delta ':\dfrac{{x + 2}}{{ - 4}} = \dfrac{{y - 1}}{{ - 2}} = \dfrac{{z + 1}}{4}\)

a) Xét vị trí tương đối giữa \(\Delta \) và \(\Delta '\);

b) Tính khoảng cách giữa \(\Delta \) và \(\Delta '\).

Xem lời giải

Bài 3.40 trang 131 SBT hình học 12

Đề bài

Cho điểm M(2; -1; 1) và đường thẳng \(\Delta :\dfrac{{x - 1}}{2} = \dfrac{{y + 1}}{{ - 1}} = \dfrac{z}{2}\)

a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên đường thẳng \(\Delta \);

b) Tìm tọa độ điểm M’ đối xứng với M qua đường thẳng \(\Delta \).

Xem lời giải

Bài 3.41 trang 132 SBT hình học 12

Đề bài

Cho điểm M(1; -1; 2) và mặt phẳng \((\alpha )\): 2x – y + 2z + 12 = 0

a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặ phẳng \((\alpha )\);

b) Tìm tọa độ điểm M’ đối xứng với M qua mặt phẳng \((\alpha )\).

Xem lời giải

Bài 3.42 trang 132 SBT hình học 12

Đề bài

Cho hai đường thẳng: \(d:\dfrac{{x - 1}}{{ - 1}} = \dfrac{{y - 2}}{2} = \dfrac{z}{3}\) và \(d':\left\{ {\begin{array}{*{20}{c}}{x = 1 + t'}\\{y = 3 - 2t'}\\{z = 1}\end{array}} \right.\)

Lập phương trình đường vuông góc chung của \(d\) và \(d’\).

Xem lời giải

Bài 3.43 trang 132 SBT hình học 12

Đề bài

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Bằng phương pháp tọa độ hãy tính khoảng cách giữa hai đường thẳng CA’ và  DD’.

Xem lời giải

Bài 3.44 trang 132 SBT hình học 12

Đề bài

Cho mặt phẳng \((\alpha )\) : 2x + y  +z – 1 = 0  và đường thẳng d: \(\dfrac{{x - 1}}{2} = \dfrac{y}{1} = \dfrac{{z + 2}}{{ - 3}}\)

Gọi M là giao điểm của d và \((\alpha )\), hãy viết phương trình của đường thẳng \(\Delta \)  đi qua M vuông góc với d và nằm trong \((\alpha )\).

Xem lời giải

Bài 3.45 trang 132 SBT hình học 12

Đề bài

Cho hai đường thẳng d1: \(\dfrac{{x - 1}}{2} = \dfrac{{y + 2}}{{ - 3}} = \dfrac{{z - 5}}{4}\) và d2: \(\left\{ {\begin{array}{*{20}{c}}{x = 7 + 3t}\\{y = 2 + 2t}\\{z = 1 - 2t}\end{array}} \right.\)

a) Chứng minh rằng d1 và d2 cùng nằm trong một mặt phẳng \((\alpha )\).

b) Viết phương trình của \((\alpha )\).

Xem lời giải

Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”