a) Với mọi \(∀n\in {\mathbb N}^*\), ta có:
\(\dfrac{{{u_{n + 1}}}}{{{u_n}}} = \dfrac{{\dfrac{3}{5}{{.2}^{n + 1}}}}{{\dfrac{3}{5}{{.2}^n}}} = 2 = const\)
Vậy dãy số đã cho là một cấp số nhân với \(u_1= \dfrac{6}{5}\) và \(q = 2\).
b) Với mọi \(∀ n\in {\mathbb N}^*\), ta có:
\(\dfrac{{{u_{n + 1}}}}{{{u_n}}} = \dfrac{{\dfrac{5}{{{2^{n + 1}}}}}}{{\dfrac{5}{{{2^n}}}}} = \dfrac{{{2^n}}}{{{2^{n + 1}}}} = \dfrac{1}{2} = const\)
Vậy dãy số đã cho là một cấp số nhân với \(u_1= \dfrac{5}{2}\) và \(q= \dfrac{1}{2}\)
c) Với mọi \(∀ n\in {\mathbb N}^*\), ta có:
\(\dfrac{{{u_{n + 1}}}}{{{u_n}}} = \dfrac{{{{\left( { - \dfrac{1}{2}} \right)}^{n + 1}}}}{{{{\left( { - \dfrac{1}{2}} \right)}^n}}} = - \dfrac{1}{2} = const\)
Vậy dãy số đã cho là cấp số nhân với \(u_1= \dfrac{-1}{2}\) và \(q= \dfrac{-1}{2}\).