\(\begin{array}{l}a)\,\,\left\{ \begin{array}{l}{u_3} = 3\\{u_5} = 27\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^2} = 3\\{u_1}.{q^4} = 27\end{array} \right. \\\Rightarrow {q^2} = 9 \Leftrightarrow q = \pm 3\\+ )\,\,q = 3 \Rightarrow {u_1} = \dfrac{3}{{{3^2}}} = \dfrac{1}{3}\\ \Rightarrow CSN:\,\,\dfrac{1}{3};1;3;9;27\\+ )\,\,q = - 3 \Rightarrow {u_1} = \dfrac{3}{{{{\left( { - 3} \right)}^2}}} = \dfrac{1}{3} \\ \Rightarrow CSN:\,\,\dfrac{1}{3}; - 1;3; - 9;27\\b)\,\,\left\{ \begin{array}{l}{u_4} - {u_2} = 25\\{u_3} - {u_1} = 50\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^3} - {u_1}q = 25\\{u_1}{q^2} - {u_1} = 50\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {{q^2} - 1} \right) = 25\\{u_1}\left( {{q^2} - 1} \right) = 50\end{array} \right.\\\Rightarrow q = \dfrac{{25}}{{50}} = \dfrac{1}{2}\\\Rightarrow {u_1}.\left( { - \dfrac{3}{4}} \right) = 50 \Leftrightarrow {u_1} = \dfrac{{ - 200}}{3}\\\Rightarrow CSN:\,\,\dfrac{{ - 200}}{3};\dfrac{{ - 100}}{3};\dfrac{{ - 50}}{3};\dfrac{{ - 25}}{3};\dfrac{{ - 25}}{6}\end{array}\)