+) \(\displaystyle {{{x^3} - {x^2} - x + 1} \over {{x^4} - 2{x^2} + 1}}\)
\( \displaystyle = {{{x^2}\left( {x - 1} \right) - \left( {x - 1} \right)} \over {{{\left( {{x^2} - 1} \right)}^2}}} \)
\( = \dfrac{{\left( {x - 1} \right)\left( {{x^2} - 1} \right)}}{{{{\left[ {\left( {x + 1} \right)\left( {x - 1} \right)} \right]}^2}}}\)
\( \displaystyle = {{\left( {x - 1} \right)\left( {x +1} \right)\left( {x - 1} \right)} \over {{{\left( {x + 1} \right)}^2}{{\left( {x - 1} \right)}^2}}} \)
\(\displaystyle = \frac{{\left( {x + 1} \right){{\left( {x - 1} \right)}^2}}}{{{{\left( {x + 1} \right)}^2}{{\left( {x - 1} \right)}^2}}}= {1 \over {x + 1}}\)
+) \(\displaystyle {{5{x^3} + 10{x^2} + 5x} \over {{x^3} + 3{x^2} + 3x + 1}} \)
\(\displaystyle = {{5x\left( {{x^2} + 2x + 1} \right)} \over {{{\left( {x + 1} \right)}^3}}} \)
\(\displaystyle = {{5x{{\left( {x + 1} \right)}^2}} \over {{{\left( {x + 1} \right)}^3}}} = {{5x} \over {x + 1}}\)
Vậy cặp phân thức cần tìm là \(\displaystyle {1 \over {x + 1}}\) và \(\displaystyle {{5x} \over {x + 1}}\).