Đề bài
Làm tính trừ phân thức :
a) \(\displaystyle{{3x - 2} \over {2xy}} - {{7x - 4} \over {2xy}}\)
b) \(\displaystyle{{3x + 5} \over {4{x^3}y}} - {{5 - 15x} \over {4{x^3}y}}\)
c) \(\displaystyle{{4x + 7} \over {2x + 2}} - {{3x + 6} \over {2x + 2}}\)
d) \(\displaystyle{{9x + 5} \over {2\left( {x - 1} \right){{\left( {x + 3} \right)}^2}}} - {{5x - 7} \over {2\left( {x - 1} \right){{\left( {x + 3} \right)}^2}}}\)
e) \(\displaystyle{{xy} \over {{x^2} - {y^2}}} - {{{x^2}} \over {{y^2} - {x^2}}}\)
f) \(\displaystyle{{5x + {y^2}} \over {{x^2}y}} - {{5y - {x^2}} \over {x{y^2}}}\)
g) \(\displaystyle{x \over {5x + 5}} - {x \over {10x - 10}}\)
h) \(\displaystyle{{x + 9} \over {{x^2} - 9}} - {3 \over {{x^2} + 3x}}\)
LG câu a, b, c
Phương pháp :
- Áp dụng quy tắc trừ hai phân thức :
\(\dfrac{A}{B} - \dfrac{C}{D} = \dfrac{A}{B} + \left( {\dfrac{{ - C}}{D}} \right).\)
- Muốn rút gọn một phân thức đại số ta làm như sau :
- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.
- Chia cả tử và mẫu cho nhân tử chung giống nhau.
Đề bài
Theo định nghĩa của phép trừ, khi viết
\(\displaystyle{A \over B} - {C \over D} - {E \over F}\) có nghĩa là \(\displaystyle{A \over B} + {{ - C} \over D} + {{ - E} \over F}\)
Áp dụng điều này để làm các phép tính sau :
a) \(\displaystyle{1 \over {3x - 2}} - {1 \over {3x + 2}} - {{3x - 6} \over {4 - 9{x^2}}}\)
b) \(\displaystyle{{18} \over {\left( {x - 3} \right)\left( {{x^2} - 9} \right)}} - {3 \over {{x^2} - 6x + 9}}\) \(\displaystyle - {x \over {{x^2} - 9}}\)
Đề bài
Rút gọn biểu thức :
a) \(\displaystyle{{3{x^2} + 5x + 1} \over {{x^3} - 1}} - {{1 - x} \over {{x^2} + x + 1}} - {3 \over {x - 1}}\)
b) \(\displaystyle{1 \over {{x^2} - x + 1}} + 1 - {{{x^2} + 2} \over {{x^3} + 1}}\)
c) \(\displaystyle{7 \over x} - {x \over {x + 6}} + {{36} \over {{x^2} + 6x}}\)
LG câu a
Phương pháp :
- Áp dụng quy tắc trừ hai phân thức :
\(\dfrac{A}{B} - \dfrac{C}{D} = \dfrac{A}{B} + \left( {\dfrac{{ - C}}{D}} \right).\)
- Muốn rút gọn một phân thức đại số ta làm như sau:
- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.
- Chia cả tử và mẫu cho nhân tử chung giống nhau.
Đề bài
Nếu mua lẻ thì giá một bút bi là \(x\) đồng. Nhưng nếu mua từ \(10\) bút trở lên thì giá mỗi bút rẻ hơn \(100\) đồng. Cô Dung dùng \(180\; 000\) đồng để mua bút cho văn phòng.
Hãy biểu diễn qua \(x\) :
- Tổng số bút mua được khi mua lẻ ;
- Số bút mua được nếu mua cùng một lúc, biết rằng giá tiền một bút không quá \(1200\) đồng ;
- Số bút được lợi khi mua cùng một lúc so với khi mua lẻ.
Đề bài
a) Chứng minh \(\displaystyle{1 \over x} - {1 \over {x + 1}} = {1 \over {x\left( {x + 1} \right)}}.\)
b) Đố. Đố em tính nhẩm được tổng sau :
\(\displaystyle{1 \over {x\left( {x + 1} \right)}} + {1 \over {\left( {x + 1} \right)\left( {x + 2} \right)}} \) \(\displaystyle+ {1 \over {\left( {x + 2} \right)\left( {x + 3} \right)}} + {1 \over {\left( {x + 3} \right)\left( {x + 4} \right)}} \) \(\displaystyle+ {1 \over {\left( {x + 4} \right)\left( {x + 5} \right)}} + {1 \over {x + 5}}\)
Đề bài
Thực hiện phép trừ
\(\displaystyle{{2x} \over {x - 1}} - {x \over {x - 1}} - {1 \over {x - 1}}\). Cách thực hiện nào sau đây là sai ?
A. \(\displaystyle{{2x} \over {x - 1}} - {x \over {x - 1}} - {1 \over {x - 1}} \) \(\displaystyle= \left( {{{2x} \over {x - 1}} - {x \over {x - 1}}} \right) - {1 \over {x - 1}} = ...;\)
B. \(\displaystyle{{2x} \over {x - 1}} - {x \over {x - 1}} - {1 \over {x - 1}} \) \(\displaystyle= {{2x} \over {x - 1}} - \left( {{x \over {x - 1}} - {1 \over {x - 1}}} \right) = ...;\)
C. \(\displaystyle{{2x} \over {x - 1}} - {x \over {x - 1}} - {1 \over {x - 1}} \) \(\displaystyle= {{2x} \over {x - 1}} - \left( {{x \over {x - 1}} + {1 \over {x - 1}}} \right) = ...;\)
D. \(\displaystyle{{2x} \over {x - 1}} - {x \over {x - 1}} - {1 \over {x - 1}} \) \(\displaystyle= {{2x} \over {x - 1}} + {{ - x} \over {x - 1}} + {{ - 1} \over {x - 1}} = ....\)
Đề bài
Trong mỗi trường hợp sau hãy tìm phân thức Q thỏa mãn điều kiện :