LG câu a
Phương pháp:
- Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(d\). Với mỗi điểm \(M=(x;y)\), gọi \(M’=Đ_d(M)=(x’;y’)\) Nếu chọn \(d\) là trục \(Oy\), thì \(\left\{ \begin{array}{l}x' = - x\\y' = y\end{array} \right.\)
- Trong mặt phẳng tọa độ \(Oxy\), cho điểm \(M=(x;y)\) và vectơ \(\vec v(a;b)\). Gọi điểm \(M’(x’;y’)=T_{\vec v}(M)\) khi đó \(\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\)
Gọi \(N=Đ_{Oy}(M)=(-1;1)\), \(M’(x’;y’)= T_{\vec v}(N)\) khi đó \(\left\{ \begin{array}{l}x' = - 1 + 2\\y' = 1 + 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x' = 1\\y' = 1\end{array} \right.\).
Vậy \(M’=(1;1)\).
LG câu b
Phương pháp:
- Trong mặt phẳng tọa độ \(Oxy\), cho điểm \(M=(x;y)\) và vectơ \(\vec v(a;b)\). Gọi điểm \(M’(x’;y’)=T_{\vec v}(M)\) khi đó \(\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\)
- Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(d\). Với mỗi điểm \(M=(x;y)\), gọi \(M’=Đ_d(M)=(x’;y’)\) Nếu chọn \(d\) là trục \(Oy\), thì \(\left\{ \begin{array}{l}x' = - x\\y' = y\end{array} \right.\)
Gọi \(N(x’;y’)= T_{\vec v}(M)\) khi đó \(\left\{ \begin{array}{l}x' = 1 + 2\\y' = 1 + 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x' = 3\\y' = 1\end{array} \right.\)
Như vậy \(N(x’;y’)= T_{\vec v}(M)=(3;1)\),
\(M’=Đ_{Oy}(N)=(-3;1)\)
Vậy \(M’=(-3;1)\).