Bài 12 trang 191 SGK Đại số và Giải tích 12 Nâng cao

Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức \(z\) thỏa mãn từng điều kiện sau:

a) \(z^2\) là số thực âm;

b  \(z^2\) là là số ảo;

c) \({z^2} = {\left( {\overline z } \right)^2}\);

d) \({1 \over {z - i}}\) là số ảo.

Lời giải


Giả sử \(z=x+yi\)

a) \({z^2} = {\left( {x + yi} \right)^2} = {x^2} - {y^2} + 2xyi\)

\(z^2\) là số thực âm\( \Leftrightarrow \left\{ \matrix{  xy = 0 \hfill \cr  {x^2} - {y^2} < 0 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  x = 0 \hfill \cr  y \ne 0 \hfill \cr}  \right.\)

Vậy tập hợp các điểm cần tìm là trục \(Oy\) trừ điểm \(O\).

b)  \({z^2} = {x^2} - {y^2} + 2xyi\)

\(z^2\) là số ảo \( \Leftrightarrow {x^2} - {y^2} = 0 \Leftrightarrow x = y\) hoặc \(y = -x\)

Vậy tập hợp các điểm cần tìm là hai đường phân giác của các gốc tọa độ.

c)

Ta có \({z^2} = {\left( {\overline z } \right)^2} \Leftrightarrow {x^2} - {y^2} + 2xyi ={x^2} - {y^2} - 2xyi\Leftrightarrow xy = 0 \Leftrightarrow \left[ \matrix{  x = 0 \hfill \cr  y = 0 \hfill \cr}  \right.\)

Vậy tập hợp các điểm cần tìm là các trục tọa độ.

d) \({1 \over {z - i}}\) là số ảo \( \Leftrightarrow z - i\) là số ảo và \(z \ne i \Leftrightarrow z\) là số ảo khác i.

Vậy tập hợp các điểm cầm tìm là trục ảo trừ điểm \(I(0; 1)\) biểu diễn số \(i\).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”