Bài 3 trang 189 SGK Đại số và Giải tích 12 Nâng cao

Bài 3

Xác định các số phức biểu diễn bởi các đỉnh của một lục giác đều có tâm là gốc tọa độ \(O\) trong mặt phẳng phức, biết rằng một đỉnh biểu diễn số i.

Lời giải

Điểm A biểu diễn số \(i\).

F có tọa độ \(\left( {\cos {\pi  \over 6};\sin {\pi  \over 6}} \right) = \left( {{{\sqrt 3 } \over 2};{1 \over 2}} \right)\) nên F biểu diễn số phức \({{\sqrt 3 } \over 2} + {1 \over 2}i.\)

E đối xứng với F qua \(Ox\) nên E biểu diễn số phức \({{\sqrt 3 } \over 2} - {1 \over 2}i.\)

B đối xứng với E qua O nên B biểu diễn số \( - {{\sqrt 3 } \over 2} + {1 \over 2}i.\)

C đối xứng với F qua O nên C biểu diễn số phức \( - {{\sqrt 3 } \over 2} - {1 \over 2}i.\)

D đối xứng với A qua O nên D biểu diễn số phức \(–i\).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”