Bài 5 trang 190 SGK Đại số và Giải tích 12 Nâng cao

Bài 5

Cho \(z =  - {1 \over 2} + {{\sqrt 3 } \over 2}i.\)

Hãy tính \({1 \over z}\); \(\overline z \); \({z^2}\); \({\left( {\overline z } \right)^3}\); \(1 + z + {z^2}\).

Lời giải

Ta có \(\left| z \right| = \sqrt {{{\left( { - {1 \over 2}} \right)}^2} + {{\left( {{{\sqrt 3 } \over 2}} \right)}^2}}  = 1\)

Nên \({1 \over z} = {{\overline z } \over {{{\left| z \right|}^2}}} = \overline z  =  - {1 \over 2} - {{\sqrt 3 } \over 2}i\)

\({z^2} = {\left( { - {1 \over 2} + {{\sqrt 3 } \over 2}i} \right)^2} = {1 \over 4} - {{\sqrt 3 } \over 2}i - {3 \over 4} =  - {1 \over 2} - {{\sqrt 3 } \over 2}i\)

\({\left( {\overline z } \right)^3} = \overline z .{\left( {\overline z } \right)^2} = \left( { - {1 \over 2} - {{\sqrt 3 } \over 2}i} \right).{\left( {{1 \over 2} + {{\sqrt 3 } \over 2}i} \right)^2}\)

          \( = \left( { - {1 \over 2} - {{\sqrt 3 } \over 2}i} \right).\left( { - {1 \over 2} + {{\sqrt 3 } \over 2}i} \right) = {\left( { - {1 \over 2}} \right)^2} - {\left( {{{\sqrt 3 } \over 2}i} \right)^2} = {1 \over 4} + {3 \over 4} = 1\)

\(1 + z + {z^2} = 1 + \left( { - {1 \over 2} + {{\sqrt 3 } \over 2}i} \right) + \left( { - {1 \over 2} - {{\sqrt 3 } \over 2}i} \right) = 0\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”