Bài 1.52 trang 23 SBT hình học 12

Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\) và khoảng cách từ \(A\) đến mặtCho hìnhCho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\) và khoảng cách từ \(A\) đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\dfrac{{a\sqrt 6 }}{3}\). Thể tích của hình chóp bằng:

A. \(\dfrac{{\sqrt 2 {a^3}}}{{16}}\)                      B. \(\dfrac{{\sqrt 2 {a^3}}}{9}\)

C. \(\dfrac{{\sqrt 2 {a^3}}}{8}\)                       D. \(\dfrac{{\sqrt 2 {a^3}}}{6}\)

Lời giải

Gọi \(O\) là tâm đáy, \(E\) là trung điểm của \(BC\) và \(H\) là hình chiếu của \(O\) trên \(SE\).

Dễ thấy \(d\left( {A,\left( {SBC} \right)} \right) = 2d\left( {O,\left( {SBC} \right)} \right)\) (vì \(AC = 2OC\)) nên \(d\left( {O,\left( {SBC} \right)} \right) = \dfrac{{a\sqrt 6 }}{6}\).

Lại có \(BC \bot \left( {SOE} \right) \Rightarrow BC \bot OH\), mà \(OH \bot SE\) nên \(OH \bot \left( {SBC} \right)\).

Do đó \(d\left( {O,\left( {SBC} \right)} \right) = OH = \dfrac{{a\sqrt 6 }}{6}\).

Tam giác \(SOE\) vuông tại \(O\) có \(OE = \dfrac{a}{2},OH = \dfrac{{a\sqrt 6 }}{6}\) nên:

\(\dfrac{1}{{O{H^2}}} = \dfrac{1}{{O{E^2}}} + \dfrac{1}{{S{O^2}}}\) \( \Rightarrow SO = \dfrac{{OE.OH}}{{\sqrt {O{E^2} - O{H^2}} }}\) \( = \dfrac{{\dfrac{a}{2}.\dfrac{{a\sqrt 6 }}{6}}}{{\sqrt {\dfrac{{{a^2}}}{4} - \dfrac{{6{a^2}}}{{36}}} }} = \dfrac{{a\sqrt 2 }}{2}\)

Thể tích khối chóp \(V = \dfrac{1}{3}SO.{S_{ABCD}}\) \( = \dfrac{1}{3}.\dfrac{{a\sqrt 2 }}{3}.{a^2} = \dfrac{{{a^3}\sqrt 2 }}{9}\).

Chọn B.


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”