a) Gọi v(t) là vận tốc của viên đạn. ta có
Suy ra \(v\left( t \right) = - 9,8t + C.\) vì \(v(0)=25\) nên suy ra \(C=25\)
Vậy \(v\left( t \right) = - 9,8t + 25.\)
Gọi T là thời điểm viên đạn đạt tốc độ cao nhất. tại đó vận tốc viên đạn có vận tốc bằng 0. Vậy \(v(T)=0\) suy ra \(T = {{25} \over {9,8}} \approx 2,55\,\) (giây).
b) Quãng đường viên đi được cho tới thời điểm \(T=2,55\) (giây) là:
\(S = \int\limits_0^T {\left( { - 9,8t + 25} \right)dt} = - 9,8{{{T^2}} \over 2} + 25T \approx 31,89\,\left( m \right)\)
Vậy quãng đường viên đạn đi được cho đến khi rơi là xuống đất là \(2S = 63,78\left( m \right).\)