a) \(\displaystyle{{x + 3} \over {{x^2} - 4}}.{{8 - 12x + 6{x^2} - {x^3}} \over {9x + 27}}\) \(\displaystyle = {{\left( {x + 3} \right)\left( {8 - 12x + 6{x^2} - {x^3}} \right)} \over {\left( {x + 2} \right)\left( {x - 2} \right).9\left( {x + 3} \right)}}\)
\(\displaystyle = {{{2^3} - {{3.2}^2}.x + 3.2{x^2} - {x^3}} \over {9\left( {x + 2} \right)\left( {x - 2} \right)}} \) \(\displaystyle = {{{{\left( {2 - x} \right)}^3}} \over { - 9\left( {x + 2} \right)\left( {2 - x} \right)}} = - {{{{\left( {2 - x} \right)}^2}} \over {9\left( {x + 2} \right)}}\)
b) \(\displaystyle{{6x - 3} \over {5{x^2} + x}}.{{25{x^2} + 10x + 1} \over {1 - 8{x^3}}}\)\(\displaystyle = {{3\left( {2x - 1} \right){{\left( {5x + 1} \right)}^2}} \over {x\left( {5x + 1} \right)\left[ {1 - {{\left( {2x} \right)}^3}} \right]}} \)
\(\displaystyle = {{3\left( {2x - 1} \right)\left( {5x + 1} \right)} \over {x\left( {1 - 2x} \right)\left( {1 + 2x + 4{x^2}} \right)}}\) \(\displaystyle = - {{3\left( {2x - 1} \right)\left( {5x + 1} \right)} \over {x\left( {2x - 1} \right)\left( {1 + 2x + 4{x^2}} \right)}} \) \(\displaystyle= - {{3\left( {5x + 1} \right)} \over {x\left( {1 + 2x + 4{x^2}} \right)}}\)
c) \(\displaystyle{{3{x^2} - x} \over {{x^2} - 1}}.{{1 - {x^4}} \over {{{\left( {1 - 3x} \right)}^3}}}\)\(\displaystyle = {{x\left( {3x - 1} \right)\left( {1 - {x^4}} \right)} \over {\left( {{x^2} - 1} \right){{\left( {1 - 3x} \right)}^3}}} \)
\(\displaystyle= {{x\left( {3x - 1} \right)\left( {{x^2} - 1} \right)\left( {{x^2} + 1} \right)} \over {\left( {{x^2} - 1} \right){{\left( {3x - 1} \right)}^3}}}\) \(\displaystyle = {{x\left( {{x^2} + 1} \right)} \over {{{\left( {3x - 1} \right)}^2}}}\)