Bài 30 trang 75 SGK Toán 8 tập 2

Tam giác \(ABC\) có độ dài các cạnh là \(AB = 3cm, AC = 5cm, BC = 7cm\). Tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\) và có chu vi bằng \(55 cm\).

Hãy tính độ dài các cạnh của \(A'B'C'\) (làm tròn đến chữ số thập phân thứ hai).

Lời giải

\( \Rightarrow \Delta ABC \) đồng dạng \( \Delta A'B'C'\left( {gt} \right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{{AB}}{{A'B'}} = \dfrac{{AC}}{{A'C'}} = \dfrac{{BC}}{{B'C'}}\)\(\, = \dfrac{{AB + AC + BC}}{{A'B' + A'C' + B'C'}}\) \( = \dfrac{{{C_{ABC}}}}{{{C_{A'B'C'}}}}\)

hay \(\dfrac{3}{A'B'}\) = \(\dfrac{7}{B'C'}\) = \(\dfrac{5}{A'C'}\) = \(\dfrac{C_{ABC}}{55}\) = \(\dfrac{3 + 7 + 5}{55}\) = \(\dfrac{{15}}{{55}}\) = \(\dfrac{3}{11}\)

\( + )\,\,\dfrac{3}{{A'B'}} = \dfrac{3}{{11}}\)\(\; \Rightarrow A'B' = \dfrac{{3.11}}{3} = 11\,cm\)

\( + )\,\,\dfrac{7}{{B'C'}} = \dfrac{3}{{11}}\)\(\; \Rightarrow B'C' = \dfrac{{7.11}}{3} = 25,67\,cm\)

\( + )\,\,\dfrac{5}{{A'C'}} = \dfrac{3}{{11}}\)\(\; \Rightarrow A'C' = \dfrac{{5.11}}{3} = 18,33\,cm\)