Hình lăng trụ
|
Số cạnh của một đáy (n)
|
Số mặt
(m)
|
Số đỉnh
d
|
Số cạnh
c
|
a)
|
6
|
8
|
12
|
18
|
b)
|
5
|
7
|
10
|
15
|
a) Công thức liên hệ giữa \(n, m, d, c\):
\(m = n + 2\);
\(d = 2n\);
\(c = 3n\).
b) Số cạnh của một đáy là:
\(\displaystyle n = {d \over 2} = {{20} \over 2} = 10\) (cạnh)
Hình lăng trụ có \(20\) đỉnh, thì:
Số mặt là: \(m = n + 2 = 10 + 2 = 12\) (mặt)
Số cạnh là: \(c = 3n = 3.10 = 30\) (cạnh)
c) Không thể làm một hình lăng trụ đứng có \(15\) đỉnh vì \(d = 2n\) (số đỉnh của lăng trụ là một số chẵn).