Bài 3.59 trang 184 SBT giải tích 12

Thể tích khối tròn xoay tạo bởi phép quay quanh trục \(\displaystyle  Ox\) của hình phẳng giới hạn bởi các đường \(\displaystyle  y = {\sin ^{\frac{3}{2}}}x,y = 0,x = 0\) và \(\displaystyle  x = \frac{\pi }{2}\) bằng

A. \(\displaystyle  1\)                       B. \(\displaystyle  \frac{2}{7}\)

C. \(\displaystyle  2\pi \)                    D. \(\displaystyle  \frac{2}{3}\pi \)

Lời giải

Ta có: \(\displaystyle  V = \pi \int\limits_0^{\frac{\pi }{2}} {{{\left( {{{\sin }^{\frac{3}{2}}}x} \right)}^2}dx} \) \(\displaystyle   = \pi .\int\limits_0^{\frac{\pi }{2}} {{{\sin }^3}xdx} \) \(\displaystyle   = \pi .\int\limits_0^{\frac{\pi }{2}} {\left( {1 - {{\cos }^2}x} \right)\sin xdx} \)

\(\displaystyle   =  - \pi .\int\limits_0^{\frac{\pi }{2}} {\left( {1 - {{\cos }^2}x} \right)d\left( {\cos x} \right)} \) \(\displaystyle   =  - \pi .\left. {\left( {\cos x - \frac{{{{\cos }^3}x}}{3}} \right)} \right|_0^{\frac{\pi }{2}}\) \(\displaystyle   =  - \pi \left( { - 1 + \frac{1}{3}} \right) = \frac{{2\pi }}{3}\)

Chọn D.