Bài 4 trang 88 SGK Đại số 10

Giải các bất phương trình sau

a) \(\dfrac{3x+1}{2}-\dfrac{x-2}{3}< \dfrac{1-2x}{4};\)

b) \((2x - 1)(x + 3) - 3x + 1 \)\(≤ (x - 1)(x + 3) + x^2– 5\).

Lời giải

a) \(\dfrac{3x+1}{2}-\dfrac{x-2}{3}< \dfrac{1-2x}{4}\)

\( \Leftrightarrow \dfrac{3x+1}{2}-\dfrac{x-2}{3}-\dfrac{1-2x}{4}<0\)

\( \Leftrightarrow \dfrac{{6\left( {3x + 1} \right)}}{{12}} - \dfrac{{4\left( {x - 2} \right)}}{{12}} - \dfrac{{3\left( {1 - 2x} \right)}}{{12}} < 0\)

\( \Leftrightarrow 6(3x + 1) - 4(x - 2) - 3(1 - 2x) \)\(< 0\)

\( \Leftrightarrow 20x + 11 < 0\)

\( \Leftrightarrow20x < - 11\)

\( \Leftrightarrow x < -\dfrac{11}{20}.\)

Vậy tập nghiệm của bất phương trình là: \(T = \left( { - \infty ; - {{11} \over {20}}} \right)\)

b) \((2x - 1)(x + 3) - 3x + 1 \)\(≤ (x - 1)(x + 3) + x^2– 5\)

\( \Leftrightarrow 2x^2+ 5x – 3 – 3x + 1 \)\(≤ x^2+ 2x – 3 + x^2- 5\)

\( \Leftrightarrow 0x ≤ -6\) ( Vô nghiệm).

Vậy bất phương trình vô nghiệm.