a) \(\Delta = {3^2} - 4.2.4 = - 23 < 0\) nên phương trình có nghiệm \({x_{1,2}} = \dfrac{{ - 3 \pm i\sqrt {23} }}{4}\)
b) \(\Delta ' = 1 - 3.7 = - 20 < 0\) nên phương trình có nghiệm \({x_{1,2}} = \dfrac{{ - 1 \pm 2i\sqrt 5 }}{3}\)
c) Đặt \(t = {x^2}\) thì phương trình trở thành \(2{t^2} + 3t - 5 = 0\)
Có \(\Delta = {3^2} + 4.2.5 = 49 > 0\) nên phương trình ẩn \(t\) có nghiệm \({t_1} = 1,{t_2} = - \dfrac{5}{2}\).
Do đó \({x_{1,2}} = \pm 1;{x_{3,4}} = \pm i\sqrt {\dfrac{5}{2}} \).