Bài 69 trang 60 SBT toán 8 tập 2

Đề bài

Giải các phương trình :

a) \(\left| {3x - 2} \right| = 2x\) 

b) \(\left| {4 + 2x} \right| = -4x\)

c) \(\left| {2x - 3} \right| = -x+21\)

d) \(\left| {3x - 1} \right| = x-2\)


Lời giải

LG câu a, b

Phương pháp :

Bước 1: Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đối.

Bước 2: Giải các phương trình không có dấu giá trị tuyệt đối.

Bước 3: Chọn nghiệm thích hợp trong từng trường hợp đang xét.

Bước 4: Kết luận nghiệm.

a) +) Trường hợp 1 :

\(\left| {3x - 2} \right| = 3x - 2\) khi \(3x - 2 \ge 0 \) hay \( x \ge \dfrac{2}{3}.\)

Khi đó, phương trình đã cho trở thành: 

\(3x-2 = 2x \Leftrightarrow 3x-2x = 2\) \(\Leftrightarrow x = 2\)

Giá trị \(x = 2\) thỏa mãn điều kiện \(x ≥ \dfrac{2}{3}.\)

+) Trường hợp 2 :

\(\left| {3x - 2} \right| = 2 -3x\) khi \(3x - 2 < 0 \) hay \( x < \dfrac{2}{3}.\)

Khi đó, phương trình đã cho trở thành: \(2 - 3x = 2x \Leftrightarrow 2 = 2x + 3x\)  \(\Leftrightarrow 5x = 2\)  \(\Leftrightarrow x =\dfrac{2}{5} .\) 

Giá trị \(x =\dfrac{2}{5}\) thỏa mãn điều kiện \(x < \dfrac{2}{3}.\)

 Vậy tập nghiệm của phương trình là: \(S = \left\{\dfrac{2}{5}; 2\right\}.\)

b) +) Trường hợp 1 :

\(\left| {4+2x} \right| = 4+2x\) khi \(4+2x \ge 0 \) hay \( x \ge  - 2.\)

Khi đó, phương trình đã cho trở thành: \(4+2x = -4x \Leftrightarrow 2x+4x =  - 4\) \(\Leftrightarrow 6x =  - 4\) \(\Leftrightarrow x = \dfrac{-2}{3}\)

Giá trị \(x = \dfrac{-2}{3}\) thỏa mãn điều kiện \(x ≥ -2.\)

+) Trường hợp 2 : 

\(\left| {4+2x} \right| = -4-2x\) khi \(4+2x < 0 \) hay \( x <  - 2.\)

Khi đó, phương trình đã cho trở thành: \(-4-2x = -4x \Leftrightarrow -2x+4x =  4\) \(\Leftrightarrow 2x =  4\) \(\Leftrightarrow x = 2\)

Giá trị \(x = 2\) không thỏa mãn điều kiện \(x < -2.\)

 Vậy tập nghiệm của phương trình là: \(S = \left\{\dfrac{-2}{3}\right\}.\)

LG câu c, d

Phương pháp :

Bước 1: Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đối.

Bước 2: Giải các phương trình không có dấu giá trị tuyệt đối.

Bước 3: Chọn nghiệm thích hợp trong từng trường hợp đang xét.

Bước 4: Kết luận nghiệm.

c) +) Trường hợp 1 :

\(\displaystyle \left| {2x - 3} \right| = 2x - 3\) khi \(\displaystyle 2x - 3 \ge 0 \) hay \(\displaystyle x \ge \dfrac{3}{2}.\)

Khi đó, phương trình đã cho trở thành:

\(\displaystyle 2x - 3 = -x + 21 \Leftrightarrow 2x +x = 21+3\)\(\displaystyle \Leftrightarrow 3x = 24\) \(\displaystyle \Leftrightarrow x = 8\) 

Giá trị \(\displaystyle x = 8\) thỏa mãn điều kiện \(\displaystyle x ≥ \dfrac{3}{2}.\) 

+) Trường hợp 2 :

\(\displaystyle \left| {2x - 3} \right| = 3 -2x \) khi \(\displaystyle 2x - 3 < 0 \) hay \(\displaystyle x < \dfrac{3}{2}.\)

Khi đó, phương trình đã cho trở thành:

\(\displaystyle 3 - 2x = -x + 21 \Leftrightarrow - 2x +x = 21-3 \)\(\displaystyle \Leftrightarrow -x = 18\) \(\displaystyle \Leftrightarrow x = -18.\) 

Giá trị \(\displaystyle x = -18\) thỏa mãn điều kiện \(\displaystyle x < \dfrac{3}{2}.\) 

 Vậy tập nghiệm của phương trình là: \(\displaystyle S = \{8;\;-18\}.\)

d) +) Trường hợp 1 :

\(\displaystyle \left| {3x - 1} \right| = 3x-1\) khi \(\displaystyle 3x -1 \ge 0 \) hay \(\displaystyle  \displaystyle x \le {1 \over 3}\)

Khi đó, phương trình đã cho trở thành:

\(\displaystyle 3x - 1 = x - 2 \Leftrightarrow  3x - x =  - 2 + 1 \)\(\displaystyle \Leftrightarrow 2x = -1\) \(\displaystyle \Leftrightarrow x = {-1 \over 2}\)

Giá trị \(\displaystyle \displaystyle x = {-1 \over 2}\) không thỏa mãn điều kiện \(\displaystyle \displaystyle x \le {1 \over 3}.\)

+) Trường hợp 2 :

\(\displaystyle \left| {3x - 1} \right| =1- 3x\) khi \(\displaystyle 3x -1 < 0 \) hay \(\displaystyle  \displaystyle x < {1 \over 3}.\)

Khi đó, phương trình đã cho trở thành: 

\(\displaystyle 1 - 3x  = x - 2 \Leftrightarrow  -3x - x =  - 2 - 1\)\(\displaystyle \Leftrightarrow -4x = -3\) \(\displaystyle \Leftrightarrow x = {3 \over 4}\)

Giá trị \(\displaystyle \displaystyle x = {3 \over 4}\) không thỏa mãn điều kiện \(\displaystyle \displaystyle x < {1 \over 3}.\)

 Vậy phương trình đã cho vô nghiệm.