\(a)\,{2^{3 - 6x}} > 1\, \Leftrightarrow {2^{3 - 6x}} > {2^0} \Leftrightarrow 3 - 6x > 0 \Leftrightarrow x < {1 \over 2}\)
Vậy \(S = \left( { - \infty ;{1 \over 2}} \right)\)
\(b)\,{16^x} > 0,125 \Leftrightarrow {2^{4x}} > {1 \over 8} \Leftrightarrow {2^{4x}} > {2^{ - 3}} \Leftrightarrow x > - {3 \over 4}\)
Vậy \(S = \left( { - {3 \over 4}; + \infty } \right)\)