Bài 86. Tính:
\(a)\,A = {9^{2{{\log }_3}4 + 4{{\log }_{81}}2}}\)
\(b)\,B = {\log _a}\left( {{{{a^2}.\root 3 \of a .\root 5 \of {{a^4}} } \over {\root 4 \of a }}} \right)\)
\(c)\,\,C = {\log _5}{\log _5}\root 5 \of {\root 5 \of {\root 5 \of {....\root 5 \of 5 } } } \)
Bài 87. Chứng minh rằng \({\log _2}3 > {\log _3}4\)
Bài 89. Chứng minh rằng hàm số \(y = \ln {1 \over {1 + x}}\) thỏa mãn hệ thức \(xy' + 1 = {e^y}\)
Bài 91. Kí hiệu M là một điểm thuộc đồ thị của hàm số \(y = {\log _a}x\). Trong hai khẳng định \(a > 1\) và \(0 < a < 1\), khẳng định nào đúng trong mỗi trường hợp sau? Vì sao?
a) M có tọa độ (0,5; -7); b) M có tọa độ (0,5; 7);
c) M có tọa độ (3; 5,2); d) M có tọa độ (3; -5,2)
Bài 93. Giải phương trình:
\(\eqalign{
& a)\,{32^{{{x + 5} \over {x - 7}}}} = 0,{25.128^{{{x + 17} \over {x - 3}}}}\,; \cr
& c)\,{4^x} - {3^{x - 0,5}} = {3^{x + 0,5}} - {2^{2x - 1}}\,; \cr} \)
\(\eqalign{
& b)\,{5^{x - 1}} = {10^x}{.2^{ - x}}{.5^{x + 1}}\,; \cr
& d)\,{3^{4x + 8}} - {4.3^{2x + 5}} + 28 = 2{\log _2}\sqrt 2 . \cr} \)
Bài 94
\(\eqalign{
& a)\,{\log _3}\left( {\log _{0,5}^2x - 3{{\log }_{0,5}}x + 5} \right) = 2\,; \cr
& c)\,1 - {1 \over 2}\log \left( {2x - 1} \right) = {1 \over 2}\log \left( {x - 9} \right)\,; \cr} \)
\(\eqalign{
& b)\,{\log _2}\left( {{{4.3}^x} - 6} \right) - {\log _2}\left( {{9^x} - 6} \right) = 1\,; \cr
& d)\,{1 \over 6}{\log _2}\left( {x - 2} \right) - {1 \over 3} = {\log _{{1 \over 8}}}\sqrt {3x - 5} . \cr} \)
Bài 96. Giải các hệ phương trình:
\(a)\,\left\{ \matrix{ {\log _2}\left( {x - y} \right) = 5 - {\log _2}\left( {x + y} \right) \hfill \cr {{\log x - \log 4} \over {\log y - \log 3}} = - 1 \hfill \cr} \right.\)
\(b)\,\left\{ \matrix{ 2{\log _2}x - {3^y} = 15 \hfill \cr {3^y}.{\log _2}x = 2{\log _2}x + {3^{y + 1}} \hfill \cr} \right.\)
Bài 97. Giải các bát phương trình sau:
\(\eqalign{
& a)\,{{1 - {{\log }_4}x} \over {1 + {{\log }_2}x}} < {1 \over 2}\,; \cr
& c)\,{\log _{{1 \over 5}}}\left( {{x^2} - 6x + 18} \right) + 2{\log _5}\left( {x - 4} \right) < 0. \cr} \)
\(b)\,{\log _{{1 \over {\sqrt 5 }}}}\left( {{6^{x + 1}} - {{36}^x}} \right) \ge - 2;\)