LG câu a
Phương pháp:
Sử dụng biểu thức tọa độ của tâm đối xứng:
Trong mặt phẳng tọa độ \(Oxy\), cho \(I=(x_0; y_0)\), gọi \(M=(x;y)\) và \(M’=(x’;y’)\) là ảnh của \(M\) qua phép đối xứng tâm \(I\). Khi đó \(\left\{ \begin{array}{l}x' = 2{x_0} - x\\y' = 2{y_0} - y\end{array} \right.\)
Trong bài này tâm đối xứng là \(O(0;0)\) nên \(\left\{ \begin{array}{l}x' = - x\\y' = - y\end{array} \right.\)
Gọi \(M’\),\(d’\) và \((C’)\) theo thứ tự là ảnh của \(M\), \(d\)và \((C)\) qua phép đối xứng qua \(O\). Dùng biểu thức tọa độ của phép đối xứng qua gốc tọa độ
Ta được : \(M’=(2;-3)\)
Phương trình của \(d’\): \(3(-x)-(-y)+9=0\)\(\Leftrightarrow 3x-y-9=0\)
Phương trình của đường tròn \((C’): {(-x)}^2+{(-y)}^2+2(-x)-6(-y)+6=0\) \(\Leftrightarrow (C’): x^2+y^2-2x+6y+6=0\)
LG câu b
Phương pháp:
Sử dụng biểu thức tọa độ của tâm đối xứng:
Trong mặt phẳng tọa độ \(Oxy\), cho \(I=(x_0; y_0)\), gọi \(M=(x;y)\) và \(M’=(x’;y’)\) là ảnh của \(M\) qua phép đối xứng tâm \(I\). Khi đó \(\left\{ \begin{array}{l}x' = 2{x_0} - x\\y' = 2{y_0} - y\end{array} \right.\)
Gọi \(M’\),\(d’\) và \(C’\) theo thứ tự là ảnh của \(M\), \(d\) và \(C\) qua phép đối xứng qua \(I\).
Vì \(I\) là trung điểm của \(MM'\) nên \(M’=(4;1)\)
Vì \(d’\) song song với \(d\) nên \(d’\) có phương trình \(3x-y+C=0\). Lấy một điểm trên \(d\), chẳng hạn \(N(0;9)\). Khi đó ảnh của \(N\)qua phép đối xứng qua tâm \(I\) là \(N’(2;-5)\). Vì \(N’\) thuộc \(d\) nên ta có \(3.2-(-5)+C=0\). Từ đó suy ra \(C=-11\).
Vậy phương trình của \(d’\) là \(3x-y-11=0\).
Để tìm \((C’)\), trước hết ta để ý rằng \((C)\) là đường tròn tâm \(J(-1;3)\), bán kính bằng \(2\). Ảnh của \(J\) qua phép đối xứng qua tâm \(I\) là \(J’(3;1)\). Do đó \((C’)\) là đường tròn tâm \(J’\) bán kính bằng \(2\). Phương trình của \((C’)\) là \({(x-3)}^2+{(y-1)}^2=4\).