Bài 141 trang 89 SBT toán 6 tập 1

Đề bài

Viết các tích sau thành dạng lũy thừa  của một số nguyên:

\(a)\) \({\rm{}}\left( { - 8} \right).{\left( { - 3} \right)^3}.\left( { + 125} \right)\)

\(b)\) \(27.{\left( { - 2} \right)^3}.\left( { - 7} \right).\left( { + 49} \right)\)

Lời giải

\(a)\) \({\rm{}}\left( { - 8} \right).{\left( { - 3} \right)^3}.\left( { + 125} \right)\)

\(=\left[ {\left( { - 2} \right).\left( { - 2} \right).\left( { - 2} \right)} \right]\)\(.\left[ {\left( { - 3} \right).\left( { - 3} \right).\left( { - 3} \right)} \right]\)\(.\left( {5.5.5} \right)\)

\(=\left[ {\left( { - 2} \right).\left( { - 3} \right).5} \right].\left[ {\left( { - 2} \right).\left( { - 3} \right).5} \right]\)\(.\left[ {\left( { - 2} \right).\left( { - 3} \right).5} \right] \)

\(=30.30.30 = {30^3}\)

\(b)\) \(27.{\left( { - 2} \right)^3}.\left( { - 7} \right).\left( { + 49} \right) \)

\(=\left( {3.3.3} \right).\left[ {\left( { - 2} \right).\left( { - 2} \right).\left( { - 2} \right)} \right]\)\(.\left[ {\left( { - 7} \right).\left( { - 7} \right).\left( { - 7} \right)} \right]\)

= \(\left[ {3.\left( { - 2} \right).\left( { - 7} \right)} \right].\left[ {3.\left( { - 2} \right).\left( { - 7} \right)} \right]\)\(.\left[ {3.\left( { - 2} \right).\left( { - 7} \right)} \right]\)

\(=42.42.42 = {42^3}\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”