a) \(\displaystyle {3^{|x - 2|}} < {3^2} \Leftrightarrow |x - 2| < 2\)\(\displaystyle \Leftrightarrow - 2 < x - 2 < 2\) \(\displaystyle \Leftrightarrow 0 < x < 4\)
b) \(\displaystyle {4^{|x + 1|}} > {4^2} \Leftrightarrow |x + 1| > 2\)\(\displaystyle \Leftrightarrow \left[ \begin{array}{l}x + 1 > 2\\x + 1 < - 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x > 1\\x < - 3\end{array} \right.\)
c) \(\displaystyle {2^{ - {x^2} + 3x}} < {2^2}\)\(\displaystyle \Leftrightarrow - {x^2} + 3x < 2\) \(\displaystyle \Leftrightarrow {x^2} - 3x + 2 > 0\) \(\displaystyle \Leftrightarrow \left[ \begin{array}{l}x < 1\\x > 2\end{array} \right.\)
d) \(\displaystyle {\left( {\frac{7}{9}} \right)^{2{x^2} - 3x}} \ge {\left( {\frac{7}{9}} \right)^{ - 1}}\)\(\displaystyle \Leftrightarrow 2{x^2} - 3x \le - 1\) \(\displaystyle \Leftrightarrow 2{x^2} - 3x + 1 \le 0\) \(\displaystyle \Leftrightarrow \frac{1}{2} \le x \le 1\)
e) \(\displaystyle \sqrt {x + 6} \ge x\)\(\displaystyle \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x + 6 \ge 0\\x < 0\end{array} \right.\\\left\{ \begin{array}{l}x \ge 0\\x + 6 \ge {x^2}\end{array} \right.\end{array} \right.\) \(\displaystyle \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x \ge - 6\\x < 0\end{array} \right.\\\left\{ \begin{array}{l}x \ge 0\\{x^2} - x - 6 \le 0\end{array} \right.\end{array} \right.\) \(\displaystyle \Leftrightarrow \left[ \begin{array}{l} - 6 \le x < 0\\\left\{ \begin{array}{l} - 2 \le x \le 3\\x \ge 0\end{array} \right.\end{array} \right.\)
\(\displaystyle \Leftrightarrow \left[ \begin{array}{l} - 6 \le x < 0\\0 \le x \le 3\end{array} \right.\)\(\displaystyle \Leftrightarrow - 6 \le x \le 3\)
g) \(\displaystyle \frac{1}{2}{.2^{2x}} + \frac{1}{4}{.2^{2x}} + \frac{1}{8}{.2^{2x}} \ge 448\)\(\displaystyle \Leftrightarrow {2^{2x}} \ge 512\) \(\displaystyle \Leftrightarrow {2^{2x}} \ge {2^9} \Leftrightarrow x \ge \frac{9}{2}\)
h) Đặt \(\displaystyle t = {4^x} > 0\), ta có hệ bất phương trình:
\(\displaystyle \left\{ \begin{array}{l}{t^2} - t - 6 \le 0\\t > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2 \le t \le 3\\t > 0\end{array} \right.\)\(\displaystyle \Leftrightarrow 0 < t \le 3 \Leftrightarrow 0 < {4^x} \le 3\) \(\displaystyle \Leftrightarrow x \le {\log _4}3\)
i) \(\displaystyle \frac{{{3^x}}}{{{3^x} - 2}} - 3 < 0\)\(\displaystyle \Leftrightarrow \frac{{ - {{2.3}^x} + 6}}{{{3^x} - 2}} < 0\) \(\displaystyle \Leftrightarrow \frac{{{3^x} - 3}}{{{3^x} - 2}} > 0 \Leftrightarrow \left[ \begin{array}{l}{3^x} > 3\\{3^x} < 2\end{array} \right.\) \(\displaystyle \Leftrightarrow \left[ \begin{array}{l}x > 1\\x < {\log _3}2\end{array} \right.\)