a) Phương trình đường thẳng \(AB: \frac{x-1}{3-1}=\frac{y-4}{-1-4}\)
\(\Leftrightarrow \frac{x-1}{2}=\frac{y-4}{-5} \Leftrightarrow 5x+2y-13=0. \)
Tương tự ta có:
phương trình đường thẳng \(BC: x - y -4 = 0\)
phương trình đường thẳng \(CA: 2x + 5y -22 = 0\)
b) Đường cao \(AH\) là đường thẳng đi qua \(A(1; 4)\) và vuông góc với \(BC\).
\(\vec{BC} = (3; 3)\) \(\Rightarrow \vec{AH} ⊥ \vec{BC}\) nên \(\vec{AH}\) nhận vectơ \(\vec{n} = (3; 3)\) làm vectơ pháp tuyến và có phương trình tổng quát:
\(AH : 3(x - 1) + 3(y -4) = 0\)
\(\Leftrightarrow 3x + 3y - 15 = 0\)
\(\Leftrightarrow x + y - 5 = 0\)
Gọi \(M\) là trung điểm \(BC\) ta có \(M (\frac{9}{2}; \frac{1}{2})\)
Trung tuyến \(AM\) là đường thẳng đi qua hai điểm \(A, M\).
\(AM:{{x - 1} \over {{9 \over 2} - 1}} = {{y - 4} \over {{1 \over 2}-4}} \Leftrightarrow x + y - 5 = 0\)