Vì \(ABCD{A_1}{B_1}{C_1}{D_1}\) là hình hộp chữ nhật nên \(DC{C_1}{D_1};CB{B_1}{C_1}\) là hình chữ nhật
\(\Delta DC{C_1}\) vuông tại \(C\) nên áp dụng định lí Pitago ta có:
\(\eqalign{
& D{C_1} = \sqrt {D{C^2} + C{C_1}^2} \cr
& \,\,\,\,\,\,\,\,\,\,\,\; = \sqrt {{5^2} + {3^2}} = \sqrt {34} \,\,\left( {cm} \right) \cr} \)
\(∆CBB_1\) vuông tại \(B\) nên áp dụng định lí Pitago ta có:
\(\eqalign{
& C{B_1} = \sqrt {C{B^2} + B{B_1}^2} \cr
& \,\,\,\,\,\,\,\,\,\,\;\, = \sqrt {{4^2} + {3^2}} = \sqrt {25} = 5(cm) \cr} \)