Bài 31 trang 10 SBT toán 8 tập 2

Đề bài

Giải các phương trình sau bằng cách đưa về dạng phương trình tích:

\(a)\) \(\left( {x - \sqrt 2 } \right) + 3\left( {{x^2} - 2} \right) = 0\)

\(b)\) \({x^2} - 5 = \left( {2x - \sqrt 5 } \right)\left( {x + \sqrt 5 } \right)\)

Lời giải

a) \(\left( {x - \sqrt 2 } \right) + 3\left( {{x^2} - 2} \right) = 0\)

\(\displaystyle   \Leftrightarrow \left( {x - \sqrt 2 } \right) \) \( + 3\left( {x + \sqrt 2 } \right)\left( {x - \sqrt 2 } \right) =0\)

\(\eqalign{ &  \Leftrightarrow \left( {x - \sqrt 2 } \right)\left[ {1 + 3\left( {x + \sqrt 2 } \right)} \right] = 0  \cr  &  \Leftrightarrow \left( {x - \sqrt 2 } \right)\left( {1 + 3x + 3\sqrt 2 } \right) = 0 \cr} \)

\( \Leftrightarrow x - \sqrt 2  = 0\) hoặc \(1 + 3x + 3\sqrt 2  = 0\)

+) Với  \(x - \sqrt 2  = 0 \Leftrightarrow x = \sqrt 2 \)

+) Với  \(1 + 3x + 3\sqrt 2  = 0 \) \(\displaystyle \Leftrightarrow \displaystyle   x =  - {{1 + 3\sqrt 2 } \over 3}\) 

 Vậy phương trình có tập nghiệm \( \displaystyle S = \{\sqrt 2 ;\,- {{1 + 3\sqrt 2 } \over 3} \}.\)

b) \({x^2} - 5 = \left( {2x - \sqrt 5 } \right)\left( {x + \sqrt 5 } \right)\)

\(\displaystyle \Leftrightarrow \left( {x + \sqrt 5 } \right)\left( {x - \sqrt 5 } \right) \) \(\displaystyle = \left( {2x - \sqrt 5 } \right)\left( {x + \sqrt 5 } \right)  \)

\(\displaystyle   \Leftrightarrow \left( {x + \sqrt 5 } \right)\left( {x - \sqrt 5 } \right) \) \(\displaystyle - \left( {2x - \sqrt 5 } \right)\left( {x + \sqrt 5 } \right) = 0  \)

\(\displaystyle  \Leftrightarrow \left( {x + \sqrt 5 } \right)\) \(\displaystyle \left[ {\left( {x - \sqrt 5 } \right) - \left( {2x - \sqrt 5 } \right)} \right] = 0  \)

\(\displaystyle   \Leftrightarrow \left( {x + \sqrt 5 } \right)\left( { - x} \right) = 0 \)

\( \Leftrightarrow x + \sqrt 5  = 0\) hoặc \( - x = 0\)

+) Với  \(x + \sqrt 5  = 0 \Leftrightarrow x =  - \sqrt 5 \)

+) Với  \( - x = 0 \Leftrightarrow x = 0\)

 Vậy phương trình có tập nghiệm \( \displaystyle S = \{- \sqrt 5 ;\,0\}.\)