Hai vòi nước cùng chảy vào một bể nước cạn (không có nước) thì sau \(4\dfrac{4}{5}\) giờ đầy bể. Nếu lúc đầu chỉ mở vòi thứ nhất và \(9\) giờ sau mới mở thêm vòi thứ hai thì sau \(\dfrac{6}{5}\) giờ nữa mới đầy bể. Hỏi nếu ngay từ đầu chỉ mở vòi thứ hai thì sau bao lâu mới đầy bể ?
Ta có phương trình: \(\dfrac{1}{x}+ \dfrac{1}{y}= \dfrac{5}{24}\) (1)
Trong \(9\) giờ, vòi thứ nhất chảy được \(9.\dfrac{1}{x}\) bể.
Trong \(\dfrac{6}{5}\) giờ cả hai vòi chảy được \(\dfrac{6}{5}. {\left( \dfrac{1}{x}+ \dfrac{1}{y}\right)}\) bể.
\(9. \dfrac{1}{x}+\dfrac{6}{5}. {\left( \dfrac{1}{x}+ \dfrac{1}{y}\right)}=1\)
\( \Leftrightarrow 9. \dfrac{1}{x}+\dfrac{6}{5}. \dfrac{1}{x}+ \dfrac{6}{5}.\dfrac{1}{y}=1\) \( \Leftrightarrow {\left(9+\dfrac{6}{5}\right)} \dfrac{1}{x}+ \dfrac{6}{5}.\dfrac{1}{y}=1\)
\( \Leftrightarrow \dfrac{51}{5}.\dfrac{1}{x}+ \dfrac{6}{5}.\dfrac{1}{y}=1\) \( \Leftrightarrow 51. \dfrac{1}{x}+ 6. \dfrac{1}{y}=5\) (2)
Từ (1) và (2) ta có hệ:
\(\left\{\begin{matrix} \dfrac{1}{x} + \dfrac{1}{y} = \dfrac{5}{24} & & \\ 51. \dfrac{1}{x}+ 6. \dfrac{1}{y}=5 & & \end{matrix}\right.\)
Đặt \(\left\{\begin{matrix} \dfrac{1}{x}=a & & \\ \dfrac{1}{y}=b & & \end{matrix}\right.\) với \(a > 0,\ b> 0.\)
Hệ đã cho trở thành:
\(\left\{\begin{matrix} a + b = \dfrac{5}{24} & & \\ 51a+ 6b=5 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 24a + 24b =5 & & \\ 51a+ 6b=5 & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 24a + 24b =5 & & \\ 204a+ 24b=20 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 24a + 24b =5 & & \\ 180a=15 & & \end{matrix}\right.\)
\( \Leftrightarrow \left\{\begin{matrix}24b =5-24a & & \\ a=\dfrac{15}{180}=\dfrac{1}{12} & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix}24b =5-24.\dfrac{1}{12} & & \\ a=\dfrac{1}{12} & & \end{matrix}\right.\)
\( \Leftrightarrow \left\{\begin{matrix}24b =3 & & \\ a=\dfrac{1}{12} & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix}b =\dfrac{3}{24} & & \\ a=\dfrac{1}{12} & & \end{matrix}\right.\)
\( \Leftrightarrow \left\{\begin{matrix}b =\dfrac{1}{8} & & \\ a=\dfrac{1}{12} & & \end{matrix} (thỏa\ mãn)\right.\)
Do đó \(\left\{\begin{matrix} \dfrac{1}{x}=\dfrac{1}{12} & & \\ \dfrac{1}{y}=\dfrac{1}{8} & & \end{matrix}\right.\) \( \Leftrightarrow \left\{\begin{matrix} x =12 & & \\ y=8 & & \end{matrix} (thỏa\ mãn)\right.\)
Vậy nếu từ đầu chỉ mở vòi hai thì sau \(8\) giờ bể sẽ đầy.