Xét hàm số \(y = f\left( x \right) = \dfrac{2}{3}x + 5\)
Với hai số \(x_1\) và \(x_2\) thuộc \(R\), ta có:
\({{\rm{y}}_1} = f\left( {{x_1}} \right) = \dfrac{2}{3}{x_1} + 5\)
\({{\rm{y}}_2} = f\left( {{x_2}} \right) = \dfrac{2}{3}{x_2} + 5\)
Nếu \({x_1} < {x_2}\) thì \({x_2} - {x_1} > 0\)
Khi đó:
\(f\left( {{x_2}} \right) - f\left( {{x_1}} \right)\)
\(= \left( {\dfrac{2}{3}{x_2} + 5} \right) - \left( {\dfrac{2}{3}{x_1} + 5} \right)\)\( = \dfrac{2}{3}\left( {{x_2} - {x_1}} \right) > 0\)
Suy ra: \(f\left( {{x_2}} \right) > f\left( {{x_1}} \right)\)
Vậy hàm số đồng biến trên \(R\).