Bài 7 trang 63 SGK Đại số 10

Giải các phương trình

a) \(\sqrt{5x +6} = x - 6\);

b) \(\sqrt{3 -x}\) = \(\sqrt{x +2} +1\);

c) \(\sqrt{2x^{2} +5} = x + 2\).

d) \(\sqrt{4x^{2} +2x + 10} = 3x + 1\).

Lời giải

a) ĐKXĐ: \(5x + 6 ≥ 0 ⇔ x \ge \dfrac{-6}{5}\).

Bình phương hai vế ta được:

\(\eqalign{
& 5x + 6 = {(x - 6)^2} \cr
&  \Rightarrow  {x^2} - 17x + 30 = 0 \cr
&  \Rightarrow \left[ \matrix{
x = 2 \text{( loại )}\hfill \cr
x = 15 \text{( thỏa mãn )}\hfill \cr} \right. \cr} \)

\(x= 2\) loại bởi vì khi ta thay giá trị \(x= 2\) vào phương trình thì vế phải âm.

Vậy phương trình có nghiệm \(x=15\).

b) ĐKXĐ: \(– 2  ≤  x ≤  3\). Bình phương hai vế ta được

\(3 - x = x + 3 + 2\sqrt{x+2}\) 
\(  \Rightarrow -2x = 2\sqrt{x+2}\).

Điều kiện \(x ≤ 0\). Bình phương tiếp ta được:

\(\eqalign{
& {x^2} = x + 2 \cr
&  \Rightarrow \left[ \matrix{
x = - 1  \text{( thỏa mãn )} \hfill \cr
x = 2 \text{( loại )} \hfill \cr} \right. \cr} \)

Vậy phương trình có nghiệm \(x=-1\)

c) Ta có: \(x+2\ge 0\Leftrightarrow x ≥ -2\).

Bình phương hai vế ta được:

\(\eqalign{
& 2{x^2} + {\rm{ }}5{\rm{ }} = {\rm{ }}{\left( {x{\rm{ }} + {\rm{ }}2} \right)^2}\cr& \Leftrightarrow {\rm{ }}{x^{2}} - {\rm{ }}4x{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0 \cr
& \Leftrightarrow \left[ \matrix{
x = 2 - \sqrt 3  \text{( thỏa mãn )}\hfill \cr
x = 2 + \sqrt 3  \text{( thỏa mãn )}\hfill \cr} \right. \cr} \)

Vậy phương trình đã cho có hai nghiệm \(x = 2 - \sqrt 3\) và \(x = 2 + \sqrt 3\)

d) Ta có: \(3x+1\ge 0\Leftrightarrow x ≥ -\dfrac{1}{3}\).

Bình phương hai vế ta được:

\(\eqalign{
& 4{x^2} + {\rm{ }}2x{\rm{ }} + {\rm{ }}10{\rm{ }} = {\rm{ }}{\left( {3x{\rm{ }} + {\rm{ }}1} \right)^2} \cr&\Leftrightarrow 5{x^2} + 4x - 9 = 0 \cr
& \Leftrightarrow \left[ \matrix{
x = 1  \text{( thỏa mãn )}\hfill \cr
x = - {9 \over 5} \text{( loại )}\hfill \cr} \right. \cr} \)

Vậy phương trình có nghiệm \(x=1\).