Câu 39 trang 122 SGK Đại số và Giải tích 11 Nâng cao

Bài 39. Các số \(x + 6y, 5x + 2y, 8x + y\) theo thứ tự đó lập thành một cấp số cộng ; đồng thời, các số \(x – 1, y + 2, x – 3y\) theo thứ tự đó lập thành một cấp số nhân. Hãy tìm x và y.

Lời giải

Vì các số \(x + 6y, 5x + 2y, 8x + y\) theo thứ tự đó lập thành một cấp số cộng nên :

\(2\left( {5x + 2y} \right) = \left( {x + 6y} \right) + \left( {8x + y} \right) \Leftrightarrow x = 3y\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\)

Vì các số \(x – 1, y + 2, x – 3y\) theo thứ tự đó lập thành một cấp số nhân nên :

\({\left( {y + 2} \right)^2} = \left( {x - 1} \right)\left( {x - 3y} \right)\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\)

Thế (1) vào (2), ta được \({\left( {y + 2} \right)^2} = 0 \Leftrightarrow y = - 2.\) Từ đó \(x = -6\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”